HO-81

Bollman Suspension Truss Bridge

Architectural Survey File

This is the architectural survey file for this MIHP record. The survey file is organized reverse-chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps.

Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment.

All material is property of the Maryland Historical Trust.

Last Updated: 05-03-2004
1. NAME

- **Common:** Bollman Truss
- **And/or Historic:** Bollman Railroad Truss

2. LOCATION

- **Street and Number:** Gorman Road and Savage Road, Little Patuxent River
- **City or Town:** Savage
- **State:** Maryland

3. CLASSIFICATION

CATEGORY (Check One)
- District
- Site
- Object
- Building
- Structure

OWNERSHIP
- Public
- Private
- Both

STATUS
- Public Acquisition
- In Process
- Being Considered
- Preservation work in progress

ACCESSIBLE TO THE PUBLIC
- Occupied
- Unoccupied
- Restricted
- Unrestricted

PRESENT USE (Check One or More as Appropriate)
- Agricultural
- Government
- Park
- Industrial
- Private Residence
- Religious
- Educational
- Military
- Scientific
- Transportation
- Other (Specify)

4. OWNER OF PROPERTY

- **Owner's Name:** County Executive, Howard County, Howard County Courthouse
- **Street and Number:** 21043 Court Place
- **City or Town:** Ellicott City
- **State:** Maryland
- **Code:** 24

5. LOCATION OF LEGAL DESCRIPTION

- **Courthouse, Registry of Deeds, Etc.:** Howard County Courthouse
- **Street and Number:** 21043 Court Place
- **City or Town:** Ellicott City
- **State:** Maryland
- **Code:** 24

6. REPRESENTATION IN EXISTING SURVEYS

- **Title of Survey:** Maryland Register of historic sites and landmarks
- **Date of Survey:** 1970
- **Repository for Survey Records:** Maryland Historical Trust
- **Street and Number:** 94 College Avenue
- **City or Town:** Annapolis
- **State:** Maryland
- **Code:** 24
7. DESCRIPTION

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>(Check One)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Excellent</td>
<td>□ Good</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Check One)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Altered</td>
</tr>
</tbody>
</table>

DESCRIBE THE PRESENT AND ORIGINAL (if known) PHYSICAL APPEARANCE

On an abandoned Baltimore and Ohio Railroad spur in the village of Savage, Maryland, approximately three miles northeast of Laurel, halfway between Washington and Baltimore, is one of America's more significant civil engineering relics. This two-span iron truss bridge is the sole surviving example of a type that played a critical role in railroad development, a story that has characteristically been dominated by the parallel progress of the locomotive.

The 1850 structure, patented in 1852, was a small span of seventy-six feet and to some extent experimental. The design was undoubtedly inspired by the classical method of strengthening a wood beam by the addition of an iron truss rod below. The Bollman truss was invariably of composite construction: those members subjected to tensile stresses were of wrought iron; those in compression were of cheaper cast iron.

George K. Fitch in the Baltimore Engineer says:

The idea of an all iron bridge was not original with Bollman. Such bridges were fairly common in England, the material at first being cast iron. The development of wrought iron and its use in combination with cast iron made a satisfactory structure but the idea failed to interest American designers principally because of the abundance of timber and the difficulty of obtaining sufficient quantities of usable iron.

By 1850, manufacturing of iron products in America had overcome any shortage.

The truss designed by Bollman was not in a true sense a truss. Rather it partook of the nature of a suspension bridge. It has been said that Latrobe, under whom Bollman worked, was skeptical of the prevalent trussing system in which the separate panel loads were accumulatively carried back to the end posts. In the Bollman design each panel load was individually carried back to the end of the bridge.

Bollman adopted the familiar "king post" method of strengthening a beam by placing a short post underneath the beam at the center point and supporting the bottom end of the post by diagonal tension rods attached to the ends of the beam. This is exactly what Bollman did.

(SEE CONTINUATION SHEET)
Bollman Truss

#6. REPRESENTATION IN EXISTING SURVEYS continued

National Historic Civil Engineering Landmark

1966 Federal

American Society of Civil Engineers
345 E. 47th Street
New York, New York code: 36

#7. DESCRIPTION continued

at each lower panel point of his truss. It should also be noted that the truss had no bottom chord and the downward stress in each vertical post was carried directly to the end posts by flat bars of wrought iron. In other words the vertical load in each post was suspended from the end posts.

This confusion of diagonal bracing gave the truss a spider-web looking elevation, but the theory was correct with one exception. Only the diagonals attached to the center post of the bridge were equal in length. All other diagonals had different lengths, which affected any distortion of material due to temperature changes causing unequal expansion in the diagonals making it difficult to keep the bridge in line.

Robert M. Vogel in an interview states in "Engineering Contributions of Wendel Alan Bollman":

A feature of the Bollman system was the independence of its structural units. Each floor beam was supported by two separate pairs of diagonal wrought-iron ("I") eye-bars or ties on each side of the bridge, so that if those carrying one beam should for any reason fail, the others would continue to carry their load undisturbed, preventing total collapse. Much was made of this point in an era when structural failures were not uncommon, and the spindly appearance of ironwork, contrasted with the familiar massiveness of works in timber.
and masonry, was a source of some uncertainty to the traveling public.

#8. SIGNIFICANCE continued

In view of the primitive state of structural theory and practice with iron construction material at the time, plus the high cost and limited supply of the material, the proposal was an awesome one.

Gradually Bollman improved his truss bridge design which the Baltimore and Ohio used exclusively for cast iron railroad bridges until 1873 when heavier railroad trains demanded a different, more durable, structural material. Approximately one hundred Bollman-designed spans, erected either by the Baltimore and Ohio or by Bollman's company, the Patapsco Bridge and Iron Works, were constructed in the United States and in Latin America. As an example of the durability of the Bollman truss, the bridge over the Potomac at Harper's Ferry—where Bollman's cast iron trusses gradually replaced the wooden bridge (1852 to 1870)—served the Baltimore and Ohio and, later, highway traffic until destroyed by a flood in 1936.

The commitment of the Baltimore and Ohio Railroad to the Bollman truss is significant in that this decision helped reduce world suspicion about cast iron for bridge construction. The Baltimore and Ohio's confidence in cast iron induced many people in America and abroad to experiment with this then-revolutionary material.

Wendel Bollman was born in Baltimore in 1814. His connection with the Baltimore and Ohio Railroad Company began on July 4, 1828 (aged 14): Bollman, before he was eighteen years old, was present when Charles Carroll of Carrollton (1737-1832) turned the first spade of earth beginning the construction of the Baltimore and Ohio Railroad. For the next two years Bollman worked as a carpenter's apprentice laying track for the Baltimore and Ohio. From 1830 to 1837 Bollman studied carpentry and became a journeyman. In 1838, while working on a house in Harper's Ferry, Bollman was asked to help repair the wooden Baltimore and Ohio Railroad bridge over the Potomac. After completing the repairs Bollman was given a permanent job at age twenty-two with the Baltimore
STATEMENT OF SIGNIFICANCE

The Bollman bridge at Savage, Maryland, is the sole surviving Bollman truss in the United States, and possibly in the world.

The system of bridge trussing invented by the Baltimore engineer Wendel Bollman (1814-1884) was the first to be used with consistency on an American railroad in which all of the principal structural members were of iron.

The direct and intimate relationship of this bridge to two present National Historic Landmarks should be noted. The Thomas Viaduct, Howard and Baltimore Counties, and the Baltimore and Ohio Transportation Museum, Baltimore City, have been so designated as fitting recognition of the vital role played by the Baltimore and Ohio Railroad in America's internal communication and transportation. The Bollman truss, it can be fairly stated, played as vital a role in the railroad's development as did any other single aspect of its early plant.

The Bollman truss bridge at Savage is the only structure in Maryland designated as a National Historic Civil Engineering Landmark (1966) by the American Society of Civil Engineers.

Bollman, serving under Benjamin H. Latrobe as "Master of Road" for the Baltimore and Ohio Railroad, gave form to the concept with what he termed a "suspension" truss.

From its inception, as the first commercially organized railroad in the United States, the Baltimore and Ohio was a pioneer venture. Its innovations in railway construction, motive power and structural engineering, influenced and led the thinking of railroads around the world. No single departure was more crucial than the decision of Benjamin H. Latrobe, the Railroad's Chief Engineer, in about 1848, to substitute iron for timber in all major bridges along the line, both old and new, to eliminate fire hazard, rot and the other defects and hazards inherent in timber construction.

(SEE CONTINUATION SHEET)
and Ohio as foreman of the bridge construction. Through self education and native ability, Bollman worked himself up to assistant, working as bridge designer for the Chief Engineer, Benjamin H. Latrobe. In 1848 Bollman was made "Master of the Road" for the Baltimore and Ohio Railroad Company which put him in charge of all construction. During his service in this position the Baltimore and Ohio completed the arduous continuation of the railroad across the mountains to the Ohio River.

His contribution to engineering is the design of more than one hundred bridges, erected by the Baltimore and Ohio Railroad Company before 1880. More significant at the time, however, were the advances Bollman made in structural theory: the rods on the Bollman truss were forerunners, in theory, to the cables used in suspension bridges. Bollman's iron columns for a bridge in Havana, Cuba, provided the inspiration for the rolled-iron columns, known as the "Phoenix" form which circumvented the brittle qualities of wrought iron. Bollman's name is not as familiar as that of John Augustus Roebling, designer of the Brooklyn Bridge, however, his influence in the development of iron bridges is equal to Roebling's.

In 1858 Bollman left the Baltimore and Ohio Company to form his own bridge building company. The Baltimore and Ohio Company continued to use Bollman's trusses and his services. In 1864 he designed the Y-shaped Harper's Ferry Bridge, which remained in good working order continuously through 1894. Bollman, working through a company of his own, designed bridges in Iowa, over the Mississippi, in Ohio, over the Ohio River, and in North Carolina, over the Cape Fear River. Bollman's skills were also in demand in Chile, Mexico, and Cuba. In his native city--Baltimore--Bollman designed a dozen bridges, including the water pipe truss over Jones Falls stream, at Lombard Street; the cast iron framework for the dome, as well as the cast iron stairs, of the City Hall, Baltimore (designed in 1873 by George A. Frederick).

The present (1971) Savage bridge was built in 1869 on the main line. As locomotive and train weight increased it became inadequate for this service and in 1888 the 1869 Savage bridge was removed to its present location on the Savage spur.
9. Major Bibliographical References

Recorders: Michael Bourne, Maryland Historical Trust, Annapolis, Maryland, 1968; Nancy Miller, Historian, Maryland Historical Trust, 1969.

(SEE CONTINUATION SHEET)

10. Geographical Data

<table>
<thead>
<tr>
<th>CORNER</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>NE</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>SE</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>SW</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Approximate Acreage of Nominated Property: 4 acres (SEE CONTINUATION SHEET)

List all states and counties for properties overlapping state or county boundaries:

<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Form Prepared By

Mrs. Preston Parish, Keeper of the Maryland Register

Maryland Historical Trust

94 College Avenue

Annapolis, Maryland 24

12. State Liaison Officer Certification

As the designated State Liaison Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service. The recommended level of significance of this nomination is:

- National []
- State [x]
- Local []

Name: Orlando Ridout IV

Title: State Liaison Officer for Maryland

Date: December 23, 1971

I hereby certify that this property is included in the National Register.

Chief, Office of Archeology and Historic Preservation

Date: __________________________

ATTENT:

Keeper of the National Register

Date: __________________________
REFERENCES continued

Fitch, George K. "Wendel Bollman ... and His Times." *Baltimore Engineer*. Vol. XLI (November 1966), 5-6, 12.

GEOGRAPHICAL DATA continued

This bridge, as a significant engineering monument, would require a protective area of four acres to assure that incompatible encroachments do not intrude upon the location.
See # HO-26

Ball Plan Trac
STATE	Maryland
COUNTY	Howard
TOWN	Savage
STREET NO.	

ORIGINAL OWNER

Baltimore & Ohio R.R.

ORIGINAL USE

Railroad Bridge for main line of Baltimore & Ohio R.R.

PRESENT USE

unused

WALL CONSTRUCTION

cast iron

NO. OF STORIES

3.

NAME

Bollman Truss

DATE OR PERIOD

1869

STYLE

Bollman Truss

ARCHITECT

|

BUILDER

|

FOR LIBRARY OF CONGRESS USE

yes

NOTABLE FEATURES, HISTORICAL SIGNIFICANCE AND DESCRIPTION

This is the last surviving example of the more than one hundred such trusses constructed of cast iron members and composed of two spans of eighty feet each, equalling 160 feet. It was moved from an unknown position to its present location, in 1888, along the main line of the Baltimore and Ohio Railroad and carried an industrial spur over the Little Patuxent River. It was last actively used in 1900.

PHYSICAL CONDITION OF STRUCTURE

Endangered no Interior Exterior good

6. **LOCATION MAP** (Plan Optional)

7. **PHOTOGRAPH**

8. **PUBLISHED SOURCES** (Author, Title, Pages)

9. **NAME, ADDRESS AND TITLE OF RECORDER**

Michael Bourne

Maryland Historical Trust

DATE OF RECORD

June, 20, 1908
This is the last surviving example of the more than one hundred such trusses constructed of cast iron members and composed of two spans of eighty feet each, equaling 160 feet. It was moved from an unknown position to its present location, in 1888, along the main line of the Baltimore and Ohio Railroad and carried an industrial spur over the Little Patuxent River. It was last actively used in 1966.
PLAN OF FLOOR BRACING

PLAN

ELEVATION

Preliminary

Prepared by
Mojeshi & Masters
January 1979

Scale in feet

0 5' 10' 15' 20' 25' 30' 35' 40'

South Abutment

Pier

North Abutment

Span 1

Span 2

U0 U1 U2 U3 U4 U5 U6
L0 L1 L2 L3 L4 L5 L6

Little Patuxent River

UPSTREAM TRUSS

DOWNSTREAM TRUSS

254' C to C
PROPERTY TO BE CONVEYED
TO
HOWARD COUNTY PARK
Savage, MD.

Scale 1"=200'
May 27, 1966

Office of Chief Engineer
Baltimore, Md.

Dwg. No. 39129
See # HO-26

BOLLMAN TRUSS

National Register
Bollman Trussed Bridge Ho-8

Jean Ewing
12/1972
Neg. on file @ NHT
IID-81
Ballman Truss Bridge
Jean Ewing
12/14/72
Neg. on file @ MHT
Savara
Bollman (Savara Iron) Truss Bridge

11/11/22
HO. 81
H0-81
Bollman Truss Bridge
Jean Cushing
17/1972
neg. on file @ MHT
HO-81
Bollman Truss Bridge
Jean Ewing
12/1972
Neg. no. 70-120-NAT
HO-81
Bollman Truss Bridge
Jean Curing
12/1972
Neg. on file @ MH7
The Savage cotton duck mill, restored in 1966, was founded in 1816. Near it stands a Bollman truss bridge, only surviving structure of its kind.
Baltimore truss bridge, Savage, Md., 1869
(behind) Savage cotton duck mill, 1816
(1956 photo)