The Naval Ordnance Laboratory achieves significance under Criterion A as the first, and until the late 1960s, the only comprehensive Cold War-period naval weapons research and development facility in the United States. The property achieves significance under Criterion B for its association with, and employment of several of the county's top scientists, and scientists brought from Germany during and after World War II, whose research at the site resulted in major scientific advances, both in Naval weapons development and science generally. Under Criterion C, the property is significant for its architectural character and design, with several buildings designed by Eggers & Higgins, one of the largest firms in the country, receiving contracts for a variety of government buildings, military facilities, hospitals, and university buildings in the post-war period. Most important under Criterion C is the engineering significance of many facilities where specialized ordnance development and testing occurred, including several unique buildings and structures. For the same three criteria (A, B, and C), the complex achieves exceptional significance under National Register Criteria Consideration G, at the national level for its pivotal role as a first-generation Cold War-period defense weapons research facility, being for many years the only, and after about 1970, the foremost facility of its kind in the United States.
June 6, 1997

Ms. Andrea Mones-O'Hara
Historic Preservation Officer
General Services Administration
National Capital Region
Washington, D.C. 20407

Dear Ms. Mones-O'Hara:

The Maryland Historical Trust has reviewed the submitted MHT Historic Sites Inventory Form and photographs for the Naval Ordnance Laboratory, received 26 March 1997. Our office had previously concurred with the U.S. Navy's determination that there were no National Register eligible properties at the Naval Ordnance Laboratory. This determination was based on the evaluation of only eleven (11) structures at the laboratory. The submitted revised documentation provides a more complete identification and evaluation of the entire laboratory complex including 372 resources. Based on this information, we concur with your determination that the Naval Ordnance Laboratory is eligible for the National Register as an Historic District under National Register Criteria A, B and C and that the district meets National Register Criteria Consideration G, regarding properties less than 50 years of age, as it has achieved exceptional significance at the national level as a first-generation Cold-War-period naval weapons research facility.

The Naval Ordnance Laboratory achieves significance under Criterion A as the first, and until the late-1960's, the only comprehensive Cold-War-period naval weapons research and development facility in the United States. The property achieves significance under Criterion B for its association with, and employment of several of the country's top scientists, and scientists brought from Germany during and after World War II, whose research at the site resulted in major scientific advances, both in Naval weapons development and science generally. Under Criterion C, the property is significant for its architectural...
character and design, with several buildings designed by Eggers & Higgins, one of the largest firms in the country, receiving contracts for a variety of government buildings, military facilities, hospitals, and university buildings in the post-war period. Most important under Criterion C is the engineering significance of many facilities where specialized ordnance development and testing occurred, including several unique buildings and structures. For the same three criteria (A, B, and C), the complex achieves exceptional significance under National Register Criteria Consideration G, at the national level for its pivotal role as a first-generation Cold-War-period defense weapons research facility, being for many years, the only, and after about 1970, the foremost facility of its kind in the United States.

Our office is concurring with your determination of eligibility for the historic district as a whole. We are not concurring with your determination concerning which individual buildings do or do not contribute to the district. Only a few photographs showing representative examples of the resources contained in the district were included with the Inventory Form. In order to make an evaluation of individual properties, we would need photographs of each building and information concerning its use, the role the building played during the district's period of significance, and an evaluation of its integrity.

We understand that this identification and evaluation has been performed as part of GSA's compliance with Section 106 of the National Historic Preservation Act of 1966 (as amended) in conjunction with the Environmental Impact Statement (EIS) for the U. S. Food and Drug Administration Consolidation. Our office has received a copy of the EIS for review through the Maryland State Clearinghouse. The EIS explains that the White Oak site will be used to provide new, consolidated, state-of-the-art facilities for the headquarters component of FDA on one location in Montgomery County, Maryland. The EIS indicates that GSA prepared a detailed evaluation of the existing buildings and systems for their potential renovations/reuse in the new development scheme, or their demolition. The findings indicated that it would not be cost effective to rehabilitate and reuse the majority of the existing buildings. All buildings within a 170 acre area will be demolished with the exception of the Building 1 (the Main Administration Building) and Building 100.

The EIS correctly states that, if the SHPO concurs with the determination that the Naval Ordnance Historic District is eligible for the National Register, the proposed action will have an adverse effect on historic properties, and that GSA will need to consult
with the SHPO, the Advisory Council, and involve interested persons to determine ways in which GSA will minimize or mitigate adverse impacts.

To date, GSA has not informed the SHPO or the Advisory Council of the proposed undertaking, alternatives considered, or the effect of the project on historic properties. We await this information to initiate Section 106 consultation concerning the effects of the project on historic properties. Should you have any questions, please contact Ms. Jo Ellen Freese at (410) 514-7630.

Sincerely,

J. Rodney Little
Maryland State Historic Preservation Officer

cc: Hon. Gilbert Gude
Mr. Charles Edson
Ms. Mary Gardiner
Ms. Gwen Marcus
Ms. Marie-Regine Charles-Bowser
<table>
<thead>
<tr>
<th>Building Number</th>
<th>Facility Name</th>
<th>Roll #</th>
<th>Photo Numbers</th>
<th>Notes</th>
<th>Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>Repetitive Impact Test Facility</td>
<td>12</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>303</td>
<td>Temp & Humidity Test Facility</td>
<td>2</td>
<td>9</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>305</td>
<td>Explosives Casting/Physical Properties Lab</td>
<td>1</td>
<td>8A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>306</td>
<td>Vibration Test Facility</td>
<td>1</td>
<td>16A</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>307</td>
<td>Warheads Operations</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>308</td>
<td>Countermeasure Development</td>
<td>11</td>
<td>13</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>311</td>
<td>Explosives Chemistry Lab</td>
<td>10</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>312</td>
<td>XPL Quality Control Lab</td>
<td>10</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>314</td>
<td>Explosives Bombproof: Warhead</td>
<td>10</td>
<td>4</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>315</td>
<td>Bombproof: Detonation Physics/Warhead Research.</td>
<td>12</td>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>316</td>
<td>Charge Assembly Building</td>
<td>5</td>
<td>3A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>317</td>
<td>Bombproof: Fragment Impact Lab</td>
<td>10</td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>318</td>
<td>Explosives Pressing/Machining Building</td>
<td>5</td>
<td>4A</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>320</td>
<td>40FT Guided Drop Tower</td>
<td>5</td>
<td>32A</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>321</td>
<td>Fracture Studies Laboratory</td>
<td>5</td>
<td>7A</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>323</td>
<td>Explosives/Warheads Operations</td>
<td>12</td>
<td>5</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>324</td>
<td>Bombproof Detonation Physics</td>
<td>5</td>
<td>10A</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>325</td>
<td>Bombproof: Sensitivities Studies</td>
<td>11</td>
<td>16</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>327 (high)</td>
<td>Bombproof Initiation Research</td>
<td>2</td>
<td>19</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>328</td>
<td>Ignition Research lab</td>
<td>12</td>
<td>6</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Building Number</td>
<td>Facility Name</td>
<td>Roll #</td>
<td>Photo Numbers</td>
<td>Notes</td>
<td>Print</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>330</td>
<td>40FT Free Fall Drop Tower</td>
<td>5</td>
<td>33A</td>
<td>Structure removed</td>
<td>21</td>
</tr>
<tr>
<td>331</td>
<td>Bombproof booster tests</td>
<td>5</td>
<td>14A</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>332</td>
<td>Bombproof: Control Building</td>
<td>5</td>
<td>13A</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>333</td>
<td>Propellant Research Building</td>
<td>5</td>
<td>15A</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>335</td>
<td>Explosives Process Control Building</td>
<td>5</td>
<td>18A</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>336</td>
<td>Explosion Damage/Nuclear Effects Lab</td>
<td>1</td>
<td>21A</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>338</td>
<td>Explosive Magazine</td>
<td>5</td>
<td>9A</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>339</td>
<td>Detonator/Lead Test Facility</td>
<td>12</td>
<td>8</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>340</td>
<td>HI Press Physics & Spec Lab</td>
<td>6</td>
<td>0</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>343</td>
<td>Chemical Laboratory</td>
<td>1</td>
<td>3A</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>344</td>
<td>Physical Properties Lab</td>
<td>1</td>
<td>4A</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>345</td>
<td>Physical Properties/Biotechnology Lab</td>
<td>1</td>
<td>5A</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>348</td>
<td>Sensitivities Study Operations</td>
<td>11</td>
<td>17</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>351</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>25A</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>352</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>24A</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>353</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>23A</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>354</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>22A</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>356</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>26A</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>357</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>27A</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>358</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>28A</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>359</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>29A</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Building Number</td>
<td>Facility Name</td>
<td>Roll #</td>
<td>Photo Numbers</td>
<td>Notes</td>
<td>Print</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>360</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>30A</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>362</td>
<td>Explosives Magazine</td>
<td>5</td>
<td>21A</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>363</td>
<td>Fuse Evaluation Facility</td>
<td>2</td>
<td>14</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>364</td>
<td>Explosives Magazine</td>
<td>10</td>
<td>5</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>366</td>
<td>Explosives Magazine</td>
<td>2</td>
<td>7</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>369</td>
<td>Temp & Humidity Test Facility</td>
<td>2</td>
<td>12</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>371</td>
<td>Gun Turret Explosives Firing Facility</td>
<td>9</td>
<td>19A</td>
<td>Structure removed</td>
<td>48</td>
</tr>
<tr>
<td>372</td>
<td>Mechanical Output Test Building</td>
<td>2</td>
<td>17</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>373</td>
<td>Control House for 372</td>
<td>2</td>
<td>16</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>375</td>
<td>Altitude Blast Chamber</td>
<td>11</td>
<td>14</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>379</td>
<td>V T Fuze Instrumentation Lab</td>
<td>6</td>
<td>12</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>382</td>
<td>Target Preparation lab</td>
<td>1</td>
<td>0A</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>383</td>
<td>Conical Shock Tube</td>
<td>6</td>
<td>14</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>386</td>
<td>Charge Assembly & Conditioning Building</td>
<td>3</td>
<td>25</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>387</td>
<td>Hi/Gravity/Tank Centrifuge Pit</td>
<td>6</td>
<td>6</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>388</td>
<td>Hi/Gravity/Tank Centrifuge Control</td>
<td>6</td>
<td>2</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>390</td>
<td>Explosive Conditioning</td>
<td>1</td>
<td>7A</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>611</td>
<td>Shock Testing Facility Building</td>
<td>12</td>
<td>9</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>613</td>
<td>Hi Energy Materials Process Development</td>
<td>12</td>
<td>10</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>615</td>
<td>Hazardous Machining/Blending</td>
<td>R</td>
<td>00A</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>617 (high)</td>
<td>Shock Tester (G Department Equip)</td>
<td>9</td>
<td>20A</td>
<td>Structure removed</td>
<td>62</td>
</tr>
<tr>
<td>Building Number</td>
<td>Facility Name</td>
<td>Roll #</td>
<td>Photo Numbers</td>
<td>Notes</td>
<td>Print</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>618 (high)</td>
<td>Shock Simulator (G Group)</td>
<td>9</td>
<td>21A</td>
<td>Structure removed</td>
<td>63</td>
</tr>
<tr>
<td>620</td>
<td>Explosives Casting Building</td>
<td>6</td>
<td>19</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>309-1</td>
<td>Altitude Blast Chamber</td>
<td>6</td>
<td>18</td>
<td>Structure removed</td>
<td>65</td>
</tr>
<tr>
<td>310-A (high)</td>
<td>Chemical Laboratory</td>
<td>R</td>
<td>3A</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>310-B (high)</td>
<td>Instrument Laboratory</td>
<td>9</td>
<td>11A</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>318-1</td>
<td>Explosives Temp Controlled Magazine</td>
<td>9</td>
<td>12A</td>
<td>Structure removed</td>
<td>68</td>
</tr>
<tr>
<td>328-3</td>
<td>Service Magazine</td>
<td>9</td>
<td>17A</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>333-1</td>
<td>Office Annex to Building 333</td>
<td>9</td>
<td>18A</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>339-1</td>
<td>Bottle Storage Shelter-339</td>
<td>1</td>
<td>18A</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>335-2</td>
<td>Explosive Processing Bays</td>
<td>9</td>
<td>13A</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>T-29</td>
<td>Neutron Calibration Facility</td>
<td>R</td>
<td>2A</td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>
M-33-25
Building 301
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

<No. 1> 813 46** N N N-B 082(052) ©

1/73
M-33-25
Building 203
Naval Ordnance Laboratory H.D.
Montgomery Co. MD
R. Voorhees
4/2003

MD SHPO

278
M-33-25
Building 305
Naval Ordnance Laboratory
Montgomery Co MD
R. Voorhees
4/1/2003
MD, SHPO

3/73
M-33-25
Building 306
Naval Ordnance Laboratory H.D.
Montgomery Co.
R Woolever
4/1/2003

MD 611 PO

4/73
M-33-25
Building 307
Naval Ordnance Laboratory HD
Montgomery Co. MD
R. Vorhees

4/2003
MD SHPO

5/73
M-33-25
Building 302
Naval Ordnance Laboratory
Montgomery, Ar. 70170
S. Humphrey
7/20/65
MD SHPO

No. 1: 642 46** N N N-6 182(052)©

6/73
M-33-25
Building 311
Naval Ordnance Laboratory H.D.
Prince Georges County, MD
R. Voorhees
4/2003
MD SHPO

<No. 2 >379 46** N N N-6 302(052)9

7/5/9
M-33-25
Building 312
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

(No. 1) 379 46** N N N-2 362(852)®

8/73
M-33-25
Building 314
Naval Ordnance Laboratory H.D.
Prince George's County, MD
R. Voorhees
4/1/2003
MD SHPO

[illegible]

9/73
M-33-25
Building 316
Naval Ordnance Laboratory H.O.
Prince George's Co. Md
R. Oorhers

4/2003
MD 54780

11/73
M-33-25
Building 317
Naval Ordnance Laboratory H.D.
Prince George's Co. MD
R. Oorhees
4/2003
MD SHPO
(No. 6) 379 46** N N N-7 892(052)

12/73
M-33-25
Building 318
Naval Ordnance Laboratory N.O.
Montgomery Co. Md.
R. Voorhees

4/1/2003
MD 5140

3/23
M-33-25
Building 320
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees

© 0.324005 46** N N-Z 202(052) 4

4/1/2003
MO SHPO

4/1/73
M-33-25

Building 321

Naval Ordnance Laboratory H Q.

Montgomery Co. MD

R. Dorrhees

N.O. THX005 46** N N N-B 1222052)

4/1003

MD 51+10

15/79
M-33-25
Building 323
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

16/73
M-33-25
Building 324
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R Voorhees

4/2003
MD SHPO

17/73
M-33-25
Building 325
Naval Ordnance Laboratory H.Q.
Prince George's Co. Md
S. Pompeoy
5/2007
MD SHPO

(No. 4) 642 46** N N N N N 422(052)©

18/73
M-33-25
Building 327
Naval Ordnance Laboratory H.O.
Montgomery Co, MD
R. Voorhees
4/1/2003

MD SHPO

19/23
M-33-25
Building 328
Naval Ordnance Laboratory H.D.
Prince George's Co., MD
S. Pomeroy
4/2003
MD SHPO
(No. 5 >813 46** N N N-1 322(052)@

20/73
M-33-25

Building 330 (structure removed)

Naval Ordnance Laboratory

H D.
Montgomery Co., mo

R. Voorhees

MD SHPO

4/2003

21/73
M-33-25
Building 331
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees

© N.O. 14R005 46** N N N-7 202 (052)
4/4/2003
MD SHPO

22/73
M-33-25
Building 332
Naval Ordnance Laboratory H.P.
Montgomery, MD
R. Voorhees

4/1/2003
MD 5HPO

23/23
M-33-25
Building 333
Naval Ordnance Laboratory
Montgomery Co, MD
R. O'erhees
4/1/2003

MD SHPO

24/73
M-33-25
Building 335
Naval Ordnance Laboratory T.N.
Montgomery Co., MD
R. Voorhees
4/1/2003

MD SHPO

25/73
M-33-25
Building 338
Naval Ordnance Laboratory H.D.
Prince Georges Co. MD
R. Woothees
4/2003

MD SHPO

27/73
M-33-25
Building 339
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

No. 7 813 46** N N N-8 302(052)®

28/73
M-33-25
Building 340
Naval Ordnance Laboratory H.D.
Montgomery Co, MD
R. Voorhees
4/2/003
MD SHPO

29/73
M-33-25
Building 343
Naval Ordnance Laboratory
Montgomery Co., MD
R. Voorhees
4/1/003

MD-5HPO

30/79
M-33-25
Building 3
Naval Ordnance Laboratory
H.S.
Montgomery Co., MD
R. O.'Leary
4/1/2003

MD SHPO

31/73
M-33-25
Building 345
Naval Ordnance Laboratory H. D.
Montgomery Co., MD
R. Voorhees
4/1/2003
M.D SHPO
32/73
M-33-25
Building 348
Naval Ordinance Laboratory H.D.
Montgomery Co., MD
R. Voorhees
4/2003
MD SHPO

<No. 5 >642 46** N N N-4 302(052)©

33/73
M-33-25
Building 351
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees
4/1/2003

34/73
M-33-25
Building 354
Naval Ordnance Laboratory H.D.
Montgomery Co. Md.
R. Oorhaza
4/12003
⑥ NO. 22R005 45** N N 362(052)
MD SHPO

37/73
M-33-25
Building 356
Naval Ordnance Laboratory H.D.
Montgomery Co. MD
R. Worthing
4/4/2003

© N.O.264005 46**N N-4 2472(OSZ)

MD SHPO

38/73
M-33-25
Building 358
Naval Ordnance Laboratory Ft. D.
Montgomery Co., MD
R. Voorhees

© 28Apr03 46** N N N-3 NN2(052)

4/2003
MD SHPO

40 / 73
M-33-25
Building 359
Naval Ordnance Laboratory H.D.
Montgomery Co. MD

R. Voorhees
4/2003

MD SHPO

4/1/73
M-33-25
Building 360
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees
4/3/60

ND 354005 46** N N N-4 102 (052) N
MD SHPO

2/2/73
M-33-25
Building 362
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Doorhees

4/3/73
M-33-25
Building 363
Naval Ordnance Laboratory
Montgomery Co MD
R. Doorhees
4/1/2003
4/4/73

MD SHFO
M-33-25
Building 369
Naval Ordnance Laboratory H.D.
Prince George's Co., Md.
R. Voorhees
4/1/2007
MD SHPO

No. 5 X379 46** N N N-7 102(052)®

45/73
M-33-25
Building 366
Naval Ordnance Laboratory H.D.
Montgomery Co. MD
R. Voorhees

4/6/73

MD SHEP
M-33-25
Building 369
Naval Ordnance Laboratory H.D.
Montgomery Co MD
R. Voorhees
4/1/2003
MD SHPO
4/7/73
M-33-25

Building 371 (Structure removed)

Naval Ordnance Laboratory H.D.

Prince George’s Co., MD

R. Voorhees

© 1994-998 4635 N N N-5 4.22 (S2)

4/2003

MD 51PO

4/8/79
M-33-25
Building 372
Naval Ordnance Laboratory
Montgomery Co. MD
R. Voorhees

4/2003
MD SHPO

4/9/73
M-33-25
Building 373
Naval Ordnance Laboratory H.D.
Montgomery Co. MD
R. Voorhees

© 1962 4625 N N N 9 0622 (G52)

4/2003

MD 01740

56/73
M-33-25
Building 375
Naval Ordnance Laboratory H.D.
Montgomery Co. Md.
S. Pomperoy
5/2003
MD SHPO

(No. 2) 642 46** N N N-6 262(052)©
M-33-25
Building 379
Naval Ordnance Laboratory H.P.
Privee George's Co. Md
R. Voorhees
4/20/03
MD SHPO

52/73
M-33-25
Building 382
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees

5/3/73

4/2003
MD SHPO
M-33-25
Building 386
Naval Ordnance Laboratory
Montgomery Co., MD
S. Pompey
5/6/803
MD SHPO

<No. 6>642 46** N N N-6 402(052)®

55/73
M-33-25
Building 387
Naval Ordnance Laboratory H.D.
Prince George's Co., MD
R. Voorhees

© N.O. 6 YX05 46** N N-2 46Z (052)
4/12/03
MD SHPO
M-33-25
Building 388
Naval Ordnance Laboratory H.D.
Prince George's Co MD
R. Voorhees

© 2003 M.D. SHPO

57/73
M-33-25
Building 390
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees

4/2003
MD SHPO

58/73
M-33-25
Building 611
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

<No. 8 >813 46** N N N-3 622(052)@

59/73
M-33-25
Building 613
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
S. Pomeroy
4/2003
MD SHPO

<No. 9> 813 46** N N N 7 522(852)©

60/73
M-33-25
Building 615
Naval Ordnance Laboratory
Montgomery Co., MD
R. Voorhees
4/2003
NO. 004160 46XX N N N 1-182 (052)
MD SHPO
61/73
M-33-25
Building 617 (Structure removed)
Naval Ordnance Laboratory H. D.
Montgomery Co. MD
R. Voorhees
4/1/2003
MD SHPO

62/73
Building 618 (Structures Removed)
Naval Ordnance Laboratory H.D.
Montgomery Co., MD
R. Voorhees

4/2003
MD SHPO

63/73
M-33-25
Building 620
Naval Ordnance Laboratory H.P.
Montgomery Co. MD
R. Voorhees
4/1/003
MD SHPO

64173
M-33-25
Building 309-1 (Building removed)
Naval Ordnance Laboratory H.D.
Prince George's Co., MD
R. Voorhees
4/2003
MD SH/PO
M-33-25
Building 310-A
Naval Ordnance Laboratory H.D.
Prince George's Co. MD
R. Doornek
4/000?
NO. 341 160 46** N N N 6 182 (052)
MD SHPO

66/73
M-33-25
Building 310-B
Naval Ordnance Laboratory H.P.
Prince George's Co. MD
R. Voorhees
4/19003
MD SHPO

67/73
M-33-25
Building 318-1 (Structure Removed)
Naval Ordnance Laboratory H.D.
Prince George's Co. md
R. Oorhees

4/1/2003
MD SHPO

6/8/73
M-33-25
Building 328-2
Naval Ordinance Laboratory H.D.
Prince George's Co., MD
R. Voorhees
4/2003

MD SHPD

69/73
M-33-25
Building 331-1
Naval Ordnance Laboratory H.P.
Prince George's Co., MD

R. Voorhees
4/2003

MD 5HPO

7/0/73
M-33-25
Building 339-1
Naval Ordnance Laboratory H.D.
Prince George's Co. MD
R. Voorhees
4/2003
MD SHPO

71/73
M-33-25
Building 335-2
Naval Ordnance Laboratory H.O.
Montgomery Co., MD
R. Voorhees

4/1/2003
MD 517 400

70/73
M-33-25
Building T-29
Naval Ordnance Laboratory H.D.
Montgomery, Co., MD
R. Voorhees
4/2003

MD SHPO

73/73
Maryland Historical Trust
State Historic Sites Inventory Form

1. Name
(indicate preferred name)

historic Naval Ordnance Laboratory
and/or common Naval Surface Warfare Center, White Oak Laboratory

2. Location

<table>
<thead>
<tr>
<th>street & number</th>
<th>10901 New Hampshire Avenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>city, town</td>
<td>White Oak, Silver Spring</td>
</tr>
<tr>
<td>state</td>
<td>Maryland</td>
</tr>
<tr>
<td>congressional district</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Ownership</th>
<th>Status</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>building(s)</td>
<td>private</td>
<td>occupied</td>
<td>agriculture</td>
</tr>
<tr>
<td>structure</td>
<td>both</td>
<td>unoccupied</td>
<td>commercial</td>
</tr>
<tr>
<td>site</td>
<td>Public Acquisition</td>
<td>work in progress</td>
<td>educational</td>
</tr>
<tr>
<td>object</td>
<td>in process</td>
<td>X yes: restricted</td>
<td>entertainment</td>
</tr>
<tr>
<td></td>
<td>X being considered</td>
<td>yes: unrestricted</td>
<td>X government</td>
</tr>
<tr>
<td></td>
<td>not applicable</td>
<td>no</td>
<td>X industrial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X military</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>other:</td>
</tr>
</tbody>
</table>

4. Owner of Property
(give names and mailing addresses of all owners)

<table>
<thead>
<tr>
<th>name</th>
<th>Department of the Navy, Engineering Field Activity Chesapeake</th>
</tr>
</thead>
<tbody>
<tr>
<td>street & number</td>
<td>Washington Navy Yard, 901 M Street, SE, Bldg. 212</td>
</tr>
<tr>
<td>city, town</td>
<td>Washington, D.C</td>
</tr>
<tr>
<td>telephone no.</td>
<td>202-685-3071</td>
</tr>
<tr>
<td>state and zip code</td>
<td>20374-5018</td>
</tr>
</tbody>
</table>

5. Location of Legal Description

<table>
<thead>
<tr>
<th>courthouse, registry of deeds, etc.</th>
<th>Washington Navy Yard, Bldg. 212, Code 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>street & number</td>
<td>901 M Street, SE</td>
</tr>
<tr>
<td>city, town</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>state</td>
<td></td>
</tr>
</tbody>
</table>

6. Representation in Existing Historical Surveys

<table>
<thead>
<tr>
<th>title</th>
<th>(SEE CONTINUATION SHEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>federal</td>
<td>state</td>
</tr>
<tr>
<td>depository for survey records</td>
<td></td>
</tr>
<tr>
<td>city, town</td>
<td>state</td>
</tr>
</tbody>
</table>
6. Representation in Existing Historical Surveys

The purpose of completing this current Maryland Historical Trust inventory form for the entire NOL White Oak complex is to fulfill Section 106 and Section 110 (National Historic Preservation Act) obligations, as well as National Environmental Policy Act (NEPA) mandates to identify and evaluate potential historic properties affected by the proposed use of the site by the General Services Administration for construction of a new consolidated campus for the Food and Drug Administration.

Previous to this MHT inventory form on the Naval Ordnance Laboratory survey district, there has been no comprehensive survey and evaluation of the NOL. The facility is not currently included in either the Montgomery County or Prince George's County inventory of historic sites (Maryland-National Capital Parks and Planning Commission 1992; Maryland-National Capital Parks and Planning Commission 1995).

The parent facility of the Naval Ordnance Laboratory at White Oak is located in the complex of buildings at the Washington Navy Yard in Southeast Washington, D.C. This complex was listed as both a National Register site and National Historic Landmark in 1973, with significance under National Register criteria A (association with events contributing to the broad patterns of our history) and C (architectural significance).

Potential above-ground historic properties at the NOL at White Oak have been recognized in two preliminary overview survey reports and one undertaking-specific report conducted for Section 106 compliance (Greenhorne & O'Mara, Inc. 1992a, 1992b, Rosenzweig 1995). The two preliminary overview reports, varying primarily in the scope of their management recommendations, were intended to provide the basis for any future intensive surveys that may be required during future construction activity. These two reports concluded by recommending that subsequent, in-depth, comprehensive surveys would need to be coordinated with the Maryland SHPO (Greenhorne & O'Mara, Inc. 1992a, 1992b).

The undertaking-specific investigation was conducted by Ecology and Environment, Inc., to assist the Navy in compliance with Section 106 for the proposed realignment of the Naval Sea Systems Command at the White Oak facility (Rosenzweig 1995). This report, titled Architectural Resource Survey, Naval Surface Warfare Center, was prepared by an archeologist and included an evaluation of eleven buildings in the 100 ("Front") Area: Buildings 1-4 (MHT Inventory Number M:33-14), Building 5 (M:33-15), Building 20 (M:33-16), Building 25 (M:33-17), Building 30 (M:33-18), Building 70 (M:33-19), Building 71 (M:33-20), and Building 90 (M:33-21). Maryland Inventory of Historic Properties survey forms were completed for these eleven buildings, including the main administrative/north-south laboratory complex. The Architectural Survey report concluded that none of the eleven buildings meet National Register criteria because of "the apparent absence of unique and significant events/developments or persons associated primarily with Naval facilities at White Oak; the absence of unique architectural styles or architecture that embodies the 'best' characteristics of a style or period; and the relatively recent age (e.g., construction of the first structure was begun in 1945) in light of the absence of overwhelming significance as noted above" (Rosenzweig 1995).

The report's conclusion also states, however, that "although the Front Area of the White Oak Laboratory appears to meet the criteria to be considered a historic district in itself, creation of a district (or discontinuous district) that includes the other primary activity areas of this facility may be more appropriate"; and that "in light of the potential for the White Oak Laboratory to meet NRHP eligibility criteria in the future because of recent and historic activities conducted there, the tenant activities at the White Oak Laboratory should exercise prudent and reasonable efforts to minimize impacting the integrity of the structures and infrastructure except as necessary to fulfill their missions" (Rosenzweig 1995).
Prepare both a summary paragraph and a general description of the resource and its various elements as it exists today.

(SEE CONTINUATION SHEET)
7. Description

Contributing Resource Count: 260
Non-contributing Resource Count: 112
Total Resource Count: 372
(See Table 7.1)

Summary Paragraph

The Naval Ordnance Laboratory (NOL) property has a variety of natural and man-made landscape features including buildings, structures, a golf course, and several wooded stream valleys. Groups of buildings—including laboratories, administrative offices, and support facilities—are distinctly separated from one another, due to initial layout requirements for isolated areas for explosives and magnetic materials testing. Groups of buildings include the 100 Area (Administration/Laboratory Complex), 200 Area (Magnetics Testing), 300 Area (Explosives Storage/Testing), 400 Area (Ballistics), 500 Area (Hazardous Materials Storage), 600 Area (Small-scale Explosives Testing), and 700 Area (Hazardous Materials Storage). The original site layout and current integrity of resources is generally very good. Of 372 buildings, structures, and landscape features, 260 (70%) are Contributing. All Areas except the 700 Area include resources that are Contributing elements of a survey district that appears eligible as a National Register historic district.

Further Description

The Naval Ordnance Laboratory, currently referred to as the Navy Department’s Naval Surface Warfare Center at White Oak, is located on a large site encompassing 732 acres. The main entrance to the site is at 10901 New Hampshire Avenue [Photo 1]. The site is approximately 1.15 miles north of the Capital Beltway (Interstate 495), and 0.75 miles south of U.S. Highway 29 (Colesville Road). The site is irregularly shaped, and bounded by New Hampshire Avenue on the west, the property is roughly bounded by Perimeter Road (just inside its boundary) on the north, east, and south (See Figure 7.1 (Location Map) and Figure 7.2 (General Resource Map)).

The area surrounding the site varies widely, and includes suburban residential subdivisions to the west, south and east, commercial buildings bordering the northwest corner along New Hampshire Avenue, Paint Branch Park to the north, Hillandale Park to the southwest, Paint Branch Stream Valley Park and Powder Mill Community Park to the southeast, and the U.S. Army’s Harry Diamond Laboratory adjacent to the south (See USGS map in Section 10).

The Naval Ordnance Laboratory (NOL) property has a variety of natural and man-made landscape features including buildings, structures, a golf course, other recreation/picnic areas, and several wooded stream valleys, the largest being Paint Branch bisecting the site from north to south. Groups of buildings including laboratories, administrative offices, and support facilities which are distinctly separated from one another, due to initial layout requirements for isolated areas for explosives and magnetic materials testing. Distinct groups of buildings and the intact natural terrain surrounding Paint Branch give the property a picturesque character, enhanced by several dozen deer occupying the woodlands around Paint Branch. The golf course around the western and southern borders of the site also contributes to the picturesque character, and preserves the campus-like design of the westernmost building complex and surrounding area.

Buildings are generally grouped on the western, central, and eastern thirds of the site with the largest and main concentration on the western third (See Figure 7.2). All buildings and structures are identified with sequential numbers on the Naval Surface Warfare Center’s property inventory (Figure 7.3 (Detailed Resource Map), Table 7.1).

Resources were constructed on the site between 1932 and 1994. The major construction phase of the NOL occurred from 1945-54. There are five pre-1945 buildings and structures: Quarters M (Officers Quarters), Building 118 (Storage Building), Quarters C (Officers Quarters), Structure 8 (Anchor Monument), and Structure 422 (Dahlgren Road Bridge). Quarters C, a pattern-book bungalow house built for use as quarters during the earliest construction phase, has been severely altered over the years; due to these alterations Quarters C is a Non-contributing element of the survey district [Photo 11]. Quarters M, built in 1932, is a small, pattern-book farmhouse that pre-existed construction of the NOL. Quarters M was used as quarters for the medical officer on duty at NOL during most of the years between 1946 and 1973. Due to major exterior alterations, including vinyl siding and the replacement of most original windows (most notably the replacement of the front elevation windows with French doors), Quarters M is also a Non-contributing element of the survey district [Photos 41-43]. Building 118 is a small frame storage shed credited with a 1942 construction date. Although it may have been moved to the site during construction of the NOL, Building 118’s original
Building numbers are assigned according to location as follows, moving west to east: the main Administrative/Laboratory complex (the 100 Area) on the westernmost portion of the site, accessed by New Hampshire Avenue; the Magnetics Area (200 Area) and Ballistics Area (400 Area) in the center of the property; the 600 Area, a small, combination fuel storage and shock testing area located across Paint Branch along Kuester Road; the Explosives Area (300 Area), located further east across Paint Branch; the 500 Area, containing a few storage buildings for hazardous materials, located at the northeast corner of the property; and the 700 Area, also containing hazardous waste storage and located on the easternmost section of the site (See Figures 7.2 and 7.3).

Both the Administration Building/Laboratory Complex and buildings in the 200 Area (Magnetics Area) were designed by the architectural firm of Eggers & Higgins, New York, with Taylor & Fisher, Baltimore, as associates. The consulting engineer was Edward A. Sears, also of New York City (Greenhorne & O'Mara, Inc. 1992a, 1992b). The three-story Administration/Laboratory Complex is articulated in a Late Art Deco style with restrained classical inspiration, and has an institutional appearance used in other government buildings of the period in Montgomery County and the metropolitan D.C. area (Alexis 1988). The facade has slightly projecting angular columns faced with granite, contrasting with the red brick walls [Photo 5]. The style and composition of the main building recalls the Bethesda Naval Hospital (1942) and Erskine Hall of the Army Mapping Service (1945) (Alexis 1988).

The Administration/Laboratory Complex survives with an excellent degree of physical integrity, its exterior remaining essentially unchanged from its original appearance (Rosenzweig 1995; Greenhorne & O'Mara, Inc. 1992a). The buildings and structures in the 100 Area—like those throughout the entire NOL site—generally retain a high degree of physical integrity [Photos 6-8]. Those built before 1974 which retain their physical integrity are recommended as contributing resources to the survey district (the rationale for the 1974 cutoff for a 1944-1973 period of significance is discussed in Section 8). Like most other groups of buildings at the NOL, the 100 Area has many non-contributing resources; these are either pre-1974 buildings that have lost their integrity or post-1974 buildings and structures, built as recently as the early 1990s [Photo 12].

The 200 Area (Magnetics Testing), is a relatively small complex of buildings and structures isolated between two streams on the west side of Paint Branch (See Figure 7.2). The area is geographically isolated from the rest of the site to avoid interference with magnetics testing, and primary buildings within the 200 Area are approximately 100 feet apart. The 16 buildings in the core of this area were designed to minimize radio wave interference. The decision to use the White Oak site for the NOL was made on several bases, including the fact that this area had uniform magnetic fields, a property which was essential for the successful operation of a magnetics testing facility. Begun at the Navy Yard, this research was essential during and immediately after World War II due to the German's development of magnetic mines, and was the first major research performed at the new facility in White Oak.

The primary 200 Area buildings in particular—such as 205 (Large Projects Laboratory, 1945), 206 (Model Laboratory, 1945), 201 (Operations Laboratory, 1945), 204 (Long Field Laboratory, 1946), 202 (Standard Laboratory, 1946), and 203 (Spherical Field Laboratory, 1946) [Photos 13, 14, 44-48]—were all constructed of large earthen blocks containing no metals. The architectural style of these same buildings is also notable. Designed by Eggers & Higgins, their unusual designs were based primarily on the practical need to house large testing equipment, however they have a uniform appearance, exhibiting characteristics of the Eclectic styles, borrowing most notably from the relatively rare French Eclectic and Italian Eclectic styles. The buildings consist of both one and two-story buildings built of earthen block, having 12/12 windows on the first stories, and 12-pane awning windows on the second stories. The main entrances to the two-story buildings have an arched set of windows over a pent roof which covers four paneled doors. The roofs are jerkin-head or hipped, and most of the roofs still possess their original slate coverings [Photos 13, 44-48]. All pre-1974 buildings in the 200 Area, excepting Building 201, are contributing elements of the survey district. Building 201 has had
extensive alterations and additions, including the renovation of two one-story wings, and the addition of stucco, aluminum siding, and the replacement of all original windows [Photo 44].

Also west of Paint Branch is the 400 Area (Ballistics Area), a densely packed cluster of approximately 38 buildings and structures (Figures 7.2 and 7.3). Notable resources within this cluster include its largest technical facilities, built in the 1950s, 1960s, and early 1970s. These include 409 (Undersea Weapons Tank, 1956), used to test mine anchoring systems, 406 (Hypersonic Tunnel Building, 1957), 427 (Hydroballistics Tank, 1966), 428 (Hydroballistics Water Storage Tank, 1966), 431 (Tunnel 9 Vacuum Sphere, 1970), and 430 (Hypervelocity Wind Tunnel, 1972) [Photos 15-20]. The latter facility is particularly important in current testing because it allows longer test times than other hypervelocity facilities in serving its purpose of providing aerodynamic simulation associated with strategic missile systems and hypersonic vehicle technologies. This complex also includes several power plants, substations, and transformers; since these are original to the period of significance, they are Contributing resources.

The 600 Area is the first group of buildings east of Paint Branch. This group of approximately 25 buildings and support structures consists of three clusters located along Kuester Road. Notable facilities include 611/618 (Shock Testing Facility, 1963/ Shock Simulator, 1960), which houses a 90-foot-long, 26-inch-bore air gun designed at NOL in 1958 for testing full-size weapons [Photos 23-24]. It likely remains one of the largest, if not the largest, of its type in the United States (Marion 1996a).

Resources in the 300 Area (Explosives Area) dominate the eastern third of the site. The approximately 160 buildings and structures in this group are located primarily on either side of Isherwood Road. A geographically distinct part of this Area is the road called Monroe Loop, where more than a dozen explosives magazines are located. This loop road runs parallel to both sides of a stream branch, with the magazines built into the hillside of the steeply sloping topography. Explosives magazines are of two basic types, illustrated by comparing the clustered containment of Structure 362 with the individual, widely spaced type used type that dominates Monroe Loop, as illustrated by structure 352 [Photos 25, 26].

The 300 Area along Isherwood Road contains a variety of explosives fabrication and testing facilities. The Chemical Laboratory (310A, 1948) is especially important for its role in the creation of numerous developments and inventions related to naval weapons. Due to a roof leak, a metal tent-like shell was built over the building circa 1970 [Photos 30, 31]. Notable among other structures are several "bombproofs" and related structures (314, 317, 324, 327, 331, 332), designed to contain and withstand various types of explosions [Photo 27]. Also notable is the layout of these facilities, spaced far enough apart so that possible explosions would not affect nearby structures. Interestingly, when a few newer or relocated facilities requiring a physical buffer were added to the complex, a large earthen berm was constructed around each one to protect it from adjacent buildings, as seen with 316 (Charge Assembly Building) [Photo 28].

Notable for both technical function and on-site invention and improvisation is a large, high-gravity centrifuge (387), containing a modified gun turret firing component (371) with the centrifuge powered by approximately 12 V-8 automobile engines [Photo 29]. This facility, used for centrifugal testing, was last used about 20 years ago (Marion 1996a).

Both the 500 and 700 Areas are small clusters of 2-5 buildings located in outlying areas and used for the storage and disposal of hazardous materials and chemicals. The 500 Area is located north of Dahlgren Road at the extreme eastern edge of the site; the 700 Area is located at the southeastern edge of the site just inside Perimeter Road. The only pre-1974 buildings among these two groups are two Contributing buildings in the 500 Area that date to 1951; the remainder (Non-contributing resources) in both areas were constructed after 1980 [Photos 34, 35].

The interiors of buildings on the site were not examined, for two primary reasons: 1) lack of access due to security restrictions, and 2) the lack of need due to the very good integrity of the exteriors, original site plan, and landscape features, which suggest very good integrity of the survey district as a whole. Generally speaking, the interiors of the largest administrative buildings appeared conservative in excess detail, and similar to 1950s school buildings in finish. A notable exception to this is the main foyer of building 1 (Administrative Laboratory), two stories tall and partially finished with marble (not photographed). Undoubtedly there have been some interior alterations to both the administrative buildings and test facilities over the years; for scientific testing facilities in particular, this would be expected over a 50-year period of use.

A few buildings at the NOL complex have exhibit panels, used during open houses and private tours. The exhibit panels reveal the facility's perception of its own importance. These panels and exhibits are located in the entryways and halls of buildings 430 (Hypervelocity Wind Tunnel), 427 (Hydroballistics Tank), and 323 (Explosives/Warheads Operations). The panels use text and photographs to illustrate several processes: "Explosive Processing Mixing and Casting," "Hydroballistic Facility" with a cutaway image of 427(Hydroballistics Tank), "Water Entry Model" (for subsurface
projectiles), and a multi-panel display on "Hypervelocity Wind Tunnel No. 9). There is also a scale model of 427 (Hydroballistics Tank) next to its exhibit panel [Photos 24, 36-40].}
8. Significance

<table>
<thead>
<tr>
<th>Period</th>
<th>Areas of Significance—Check and justify below</th>
</tr>
</thead>
<tbody>
<tr>
<td>prehistoric</td>
<td>archeology-prehistoric</td>
</tr>
<tr>
<td>1400-1499</td>
<td>archeology-historic</td>
</tr>
<tr>
<td>1500-1599</td>
<td>agriculture</td>
</tr>
<tr>
<td>1600-1699</td>
<td>X architecture</td>
</tr>
<tr>
<td>1700-1799</td>
<td>art</td>
</tr>
<tr>
<td>1800-1899</td>
<td>commerce</td>
</tr>
<tr>
<td>X 1900-</td>
<td>communications</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific dates: 1944-73

Builder/Architect: Eggers & Higgins, Taylor & Fisher Associates

Check: Applicable Criteria: X A X B X C D

Applicable Exception: A B C D E F X G

Level of Significance: X national X state X local

Prepare both a summary paragraph of significance and a general statement of history and support.

(SEE CONTINUATION SHEET)
8. Significance

Summary Paragraph

The Naval Ordnance Laboratory (NOL) is significant as an historic district under National Register criteria A, B, and C. The property achieves significance under Criterion A (association with an event or historical trend) as the first, and until the late-1960s, the only comprehensive Cold-War-period naval weapons research and development facility in the United States. Virtually every explosive ingredient used by the Department of Defense was developed and tested at the NOL, as well as numerous new metal alloys, batteries, and countless other materials, processes, and new mathematical formulae, which have become essential in military, medical, and commercial applications, were developed at the NOL. Experiments in flow mechanics, magnetics, and other fields such as Chaos analysis, have led to hundreds of practical uses throughout the world. The property achieves significance under Criterion B (association with an important person) for its association with, and employment of several of the country's top scientists, and scientists brought from Germany during and after World War II, whose research at the site resulted in major scientific advances, both in Naval weapons development and science generally. Under Criterion C (architecture, engineering, construction, aesthetic significance) the NOL is significant for its architectural character and design, with several buildings designed by Eggers & Higgins, one of the largest firms in the country, receiving contracts for a variety of government buildings, military facilities, hospitals, and university buildings in the post-war period. The buildings designed by Eggers & Higgins included main laboratory buildings in an austere neoclassical style typical of government buildings of the period, and the 200 Area's unique Eclectic style earthen block buildings, containing non-ferrous materials that do not interfere with magnetics testing. Significance is also contained in the carefully designed site plan, including the campus-like design of the 100 Area, golf course as an early element and physical landscape buffer for the 100 Area, natural physical buffers (trees and streams) separating other areas, and specialized building groups. The site location for the NOL was carefully selected for its natural geomagnetic character. Perhaps most important under Criterion C is the engineering significance of many facilities where specialized ordnance development and testing occurred, including several unique buildings and structures.

Sixty-one buildings and structures at the complex were constructed before 1948 (the fifty-year cutoff for properties to be eligible without the special exception criterion), with these pre-1948 facilities located in the 100, 200, 300, and 400 Areas. The initial, primary building phase occurred from 1945-1954, with subsequent groups of buildings and structures completed in the 1960s and 1970s, reflecting technological advances and changing needs in naval weapons development during the Cold War period.

For the same three criteria noted above (A, B, and C), the complex achieves exceptional significance under National Register Criteria Consideration G, at the national level for its pivotal role as a first-generation Cold-War-period defense weapons research facility, being for many years, the only, and after about 1970, the foremost facility of its kind in the United States. The NOL laboratories designed and developed the majority of early Cold War technology and ordnance (Criterion A). The NOL is also associated with several nationally and internationally significant scientists (Criterion B), and has many unique buildings and structures related to testing weapons systems throughout the Cold War period, with significance in the areas of both architecture and engineering, some designed by a nationally renowned architecture firm (Criterion C).

Significance at the state and local levels has also been recognized in local planning documents. Though not yet included on lists of historic sites in either the Montgomery or Prince George's County inventories, local significance is noted in the NOL's contribution to the growth of military facilities and suburban expansion in the World-War-II and Cold-War periods. Historic Resources of the Eastern Montgomery County Master Plan Areas states that the Naval Surface Warfare Center at White Oak "may well be considered to possess public architectural significance and historical importance for their association with the federal government's decentralization policies during the Cold War era..." (Maryland-National Capital Park & Planning Commission 1995).

The latest White Oak master plan, in recognizing the economic value of the Front Area complex, "recommends a future reuse study of the Naval Surface Warfare Center if it is determined that the base will be closed" (Public Hearing Preliminary Draft, White Oak Master Plan 1995).
Period of Significance: 1944-1973

The period of significance in which all significant buildings were constructed is 1944-1973. The period of significance not only includes NOL's site acquisition and major construction phase (1944-54) but also the period in which this facility experienced its heyday—through the late 1950s and 1960s—as the foremost Naval research and development laboratory in the United States. Of the 260 structures determined as contributing, only two of them (less than one percent) were built after 1973. Also, the mission of the facility changed after 1973. The end date of 1974 marks an administrative change in the history of the NOL, when nearly a decade of debate over its mission resulted in consolidation with the Dahlgren facility (and subsequently renamed the "Naval Surface Warfare Center") as well as the construction of other Naval research facilities in other parts of the country. All major significant buildings and engineering facilities on the site, including 430 and 431 (Hypervelocity Tunnel Number 9, 1972, and Tunnel 9 Vacuum Sphere, 1970) were constructed by 1974.
Elaboration of History and Significance

Land for the Naval Ordnance Laboratory complex at the White Oak site was acquired by the U.S. Navy in 1944 to supplement the tremendous wartime expansion of research and weapons development needs at the original Ordnance Laboratory located at the Washington Navy Yard in southeast Washington, D.C. According to the published administrative history of the White Oak facility, during World War II the Washington Navy Yard's Naval Ordnance Laboratory became the world's largest military research and development center of its kind (Smaldone 1977). The Washington Navy Yard, where the NOL's parent facility is located, was listed as both a National Register site and National Historic Landmark in 1973, with significance under National Register criteria A (association with events contributing to the broad patterns of our history) and C (for architectural significance).

Despite the end of the war, there were several reasons for pursuing plans to expand Navy Yard facilities and relocate the Ordnance Laboratory functions to a new, separate site. During war time, lack of space made it increasingly difficult for growing ordnance testing laboratories and production facilities (the Naval Gun Factory) to coexist on the same site. In searching for a new site, the Bureau of Ordnance required several characteristics for a new ordnance laboratory site, including: a suburban site within 30 minutes driving distance from the main Navy Yard buildings; a location near a developed residential community commensurate with the income of NOL personnel; a low-density location where security could be enforced relatively easily; an area isolated from residential and commercial buildings to minimize radio and communications interference; a large site with sufficient open space to allow the isolated locations for electromagnetic testing facilities; a site with little "magnetic noise", or with ground having uniform magnetic fields to accommodate magnetic testing; and the potential for a campus-like atmosphere to attract civilian scientific and research personnel (Rosenzweig 1995). At the time, the idea of having a facility solely for the purpose of Navy research and development was somewhat revolutionary.

A new ordnance laboratory accommodated an expanded post-war research and development program which included a new partnership between military officers and civilian scientists. This cooperative approach, quickly accepted throughout the Navy, was forwarded by Dr. Ralph D. Bennett, a Massachusetts Institute of Technology professor who became associated with the NOL in 1940. Bennett eventually became its Director by 1945, and remained in that position until 1954 (Alexis 1988). Laboratory and testing facilities were built at the White Oak site during an initial building campaign lasting between 1945 and 1954, with the transfer of Naval Ordnance Laboratory operations from the Navy Yard completed in mid-June 1948 (Greenhorne & O'Mara, Inc. 1992a; Rosenzweig 1995). A resulting housing boom transformed the White Oak area in the decade following World War II, immediately felt in the Burnt Mills Knolls neighborhood, where it is estimated that 60% of the houses around Schindler Drive, named in honor of the Lab's former chief Admiral, Walter Schindler, were purchased by Laboratory employees (Maryland-National Capital Parks and Planning Commission 1995).

The Administration and Laboratory complex (in the 100 Area), Magnetic Research buildings (in the 200 Area), and several buildings in the 400 Area were designed by the architectural firm of Eggers & Higgins, New York, with Taylor & Fisher, Baltimore, as associates. The consulting engineer was Edward A. Sears, also of New York City. Otto Eggers and Daniel Paul Higgins were partners in, and successors to, the firm of John Russell Pope, the internationally renowned architect. In 1937, after Pope's death, they formed their own firm, completing such projects as the National Gallery of Art, and the Jefferson Memorial (Rosenzweig 1995). By the 1950s the firm of Eggers & Higgins was one of the largest in the country, designing a large number of government buildings, hospitals, military facilities, commercial buildings, and university buildings (Greenhorne & O'Mara, Inc. 1992a, 1992b). According to Historic Resources of the Eastern Montgomery County Master Plan Areas, the buildings at the facility "were highly representative of the firm's nationally renowned modern Neo-classical design" (Maryland-National Capital Park & Planning Commission 1995).

The three-story administration/laboratory complex is articulated in a Late Art Deco style with restrained Neoclassical inspiration, with an institutional appearance used in other government buildings of the period in Montgomery County and the metropolitan area (Alexis 1988). The Front Area, with its original circular drive, maintains the rigid symmetry of its original campus design. Its focal point is the facade of the main building, visible from New Hampshire Avenue. The facade has slightly projecting angular columns faced with granite contrasting with the red brick construction. The style and appearance of the main building recalls the Bethesda Naval Hospital (1942) and Erskine Hall of the Army Mapping Service (1945) (Alexis 1988).

One aspect of the NOL landscape that holds particular significance for NOL employees is the nine-hole golf course, which was conceived, built, and maintained entirely by the employees. By 1952 the NOL Employees Association formed a special Naval Ordnance Laboratory Golf Association (NOLGA) to explore the construction of an employee golf course.
The golf course is personally important to many former and current employees as a major achievement because all costs associated with the venture were borne by the members, with no Navy-appropriated funds used for its construction and maintenance. This also included the purchase and maintenance of all equipment required to service the golf course. Because of a close working relationship with the University of Maryland, the NOL golf course was the first to use the then new hybrid of Zoysia which was developed by the University's agricultural labs. In 1964, the NOLGA contracted with Edmund Ault, a registered golf course architect, to provide a long range renovation plan to improve the course's safety and character. Over the next thirty years several of these suggestions were implemented, again using association members to provide not only the funding but the physical labor. Initially, membership was restricted to military and civilian employees of NOL, the Army's Harry Diamond Laboratory, and employees of tenant activities at NOL. For community relations, membership was opened to residents in the surrounding communities by the 1960s. The vast majority of current members are retired employees (Marion 1996b).

The mission of the NOL at White Oak upon its creation in 1945 was to:

Carry out the mission of research and development establishments as related generally but not exclusively to fire control, demolitions, guns and accessories, explosives, including nuclear, projectiles, propellants, ammunition and components, guided missiles, mines, depth charges, torpedoes, nets, degaussing, and such other weapons or devices as may from time to time be assigned (Smaldone 1977).

By 1956, when many aspects of the facility were in full operation, the general mission statement became more focused: "conduct research, design, development, test, and technical evaluation of ordnance materials, components, assemblies and systems, principally in the fields of fuzes, explosives, warheads, mines, depth charges, torpedoes, bombs and missiles." The statement concluded with an added emphasis, to "conduct research and evaluation in the fields of aerodynamics" (Smaldone 1977). By 1972, the initial, broad mission of the NOL became more restricted, due to both the growth of other Navy facilities and the impending consolidation with the Navy's Dahlgren facility. By that time, the NOL's mission was to be the principal, although no longer the exclusive, in-house research and development facility for ordnance technology, concepts, and systems (Smaldone 1977).

Since its founding, the White Oak facility has developed numerous unique and highly significant research facilities, including wind tunnels, a hydroacoustic facility, hydroballistics tank, electromagnetically shielded laboratories, and several environmental and nuclear effects simulation facilities (Greenhorne & O'Mara, Inc. 1992a). An interesting aspect of weapons development at the NOL involved war prizes after 1945 and interaction with German scientists after the war. The sphere on top of 402 (Supersonic Wind Tunnel, 1947) is a German war prize that became important in the testing of V-2 rocket projectiles (DeSavage 1996). According to architect Joseph Miller, who was the project manager for Eggers & Higgins associated with the design and construction of the Supersonic Wind Tunnel, German engineers were brought to White Oak and provided valuable information, because they were the designers of the original rocket system that caused much damage in London during World War II (Miller 1996).

Among the most notable scientists brought from Germany after the war was Dr. Rudolf Hermann. Dr. Hermann was Director of the German wind tunnel developments at Peenemunde, Germany beginning in 1936, and after November of 1944, at Kochel, Germany. The experiments and equipment used at Kochel included supersonic wind tunnels, and the beginning of the design and construction of a hypersonic wind tunnel for Mach 10 wind experiments.

Following the war, two German supersonic wind tunnels (Supersonic Tunnels 1 and 2), along with the designs, reports and experiment data were sent to the NOL in White Oak. One tunnel, Wind Tunnel No. 1, is still on site, and the historic documents brought from Germany are still extant today in the NOL archives. Dr. Hermann and approximately 35 of his associates and engineers were also brought to the NOL to continue the work. Dr. Hermann Kurzweg, who had been Dr. Rudolph Hermann's Assistant Director in Germany, also came to NOL, and became the Director of the NOL Wind Tunnel Laboratories. Other German scientists who worked at NOL after the war were, Dr. Richard Lehnert (now retired from NASA), Dr. Gerhard Eber, Dr. Ernest Winkler (now retired from NSWC), Dr. Edmund Stollenwerk (now retired from Lockheed), Max Peucker, Dr. Peter Wegener (now a professor at Yale University), and Dr. Willi Heybey (now retired from NASA). Under project "Papercip", Dr. Karl H. Grunewald, Dr. Eva Winkler, and Mr. Florian Geineder joined the NOL team during the years 1947 and 1948 (Hastings 1979; Sherman 1988).

Although the United States had a few other wind tunnels in operation or under construction after the war, such as the Lone-Star tunnel in Daingerfield, Texas, and one tunnel at the Aberdeen Proving Ground in Maryland, these tunnels were extremely limited in their capacity, leaving NOL as the primary research facility for flow experiments throughout the Cold War Era (Hastings 1979).
Since its creation the NOL's research and development mission has depended on a cooperative approach between military officers and many of the top scientists in the United States. Scientists of note whose research at NOL has resulted directly in the development of major scientific advances include Dr. John Bardeen, whose research resulted in the invention of transistors. Dr. Bardeen has been awarded two Nobel Prizes in Physics, one for the invention of the transistor in 1956, and one for the development of a theoretical explanation for superconductivity in terms of quantum theory (Hamlin 1985). Dr. Bardeen is the only one to have received two Nobel Prizes in the same subject.

The basic operating principles for all modern computers were invented in the early 1940s by Dr. John Vincent Atanasoff, who worked at NOL until moving on to establish his own business in 1952. Although Dr. Atanasoff has not always been recognized for his great contribution to our society due to others who originally took credit for his work, in 1973, the courts ruled that the invention of the electronic digital computer was the work of Dr. John Vincent Atanasoff. Today, Atanasoff is recognized worldwide for his achievement (Hamlin, 1984). Experience with early computers at the NOL reportedly inspired the term "de-bugging" for fixing computer problems; the term originated because moths frequently got into computers causing faulty circuitry.

Other well known scientists at the NOL include Dr. Donna Price, whose work in 310A (Chemical Laboratory) resulted in major advances in the field of plastic explosives (Caudle 1996; DeSavage 1996). Dr. Price is revered as a national expert in the field of plastic explosives. Dr. Kathryn Shipp, who worked at NOL during the 1950s and 1960s, discovered several complex organic compounds, the best known of which is HNS, which was developed at NOL and used on the moon by the Apollo 14 astronauts in active seismic experiments upon the request of NASA. HNS was also used to deploy the landing gear of the lunar module, and to effect the separation of different stages. Dr. Shipp received a Presidential award for her work on this project. Other chemists involved with the Apollo program at NOL were Dr. Jerome Rosen, Harry Heller, and Eugene Klimmer (NOL 1971).

Ceramics research and development was undertaken by former Soviet scientist Dr. Talmy Inna at the NOL. A widely used application of this research is the production of ceramic tiles and brick from fly-ash generated by coal fired electric plants [this technology is currently being used by Montgomery County, Maryland] (Caudle, et al. 1997).

The research and weapons development which took place at the NOL are of exceptional importance in our Nation's waging of the Cold War. Most of our most innovative weapons systems were developed in their entirety at this site, and many other NOL research products have become essential to American commercial products. In addition, many of the Nation's top scientists worked on these studies at NOL. Some specific achievements include:

AERODYNAMICS

Eventually, seven wind tunnels were built at NOL between 1946 and 1972, many of which are still operational. Most of these tunnels were also designed at NOL. Early work on the tunnels was performed at a frenetic pace, with three shifts working through the night. Tests performed in the original German Tunnels 1 and 2 included those on, guided missiles, mines, depth bombs, sonobouys, aircraft and reentry bodies. Hardware produced as a result of these experiments included 20mm and 40mm antiaircraft projectiles, the MK-80 series bombs, Sidewinder and Bumblebee missiles, SUBROC, the F-102 Fighter aircraft, Jupiter and the MK-1 and MK-2 Polaris (Hastings 1979).

Tunnel 3, built in 1949, was used primarily for supersonic diffuser research, which became the basis for future diffuser research at Tullahoma, Tennessee. In 1955, this tunnel was given to the Aerospace Engineering Department of the University of Maryland. Tunnel 4 was built in 1950. In this tunnel was demonstrated the first air-liquification-free hypersonic tunnel flows at Mach speeds up to 10. This tunnel made the first Mach 10 static force tests on the Polaris MK-1, the Jupiter, Pershing, and Minuteman missiles. Tunnel 6, also completed in 1950, was used to research supersonic turbulence and shock wave phenomena. The first Schlieren photographs of jet aircraft creating a shock wave (sonic boom) were taken at NOL during wind tunnel experiments. Important new measurement techniques such as color Schlieren and Laser Holographic Interferometry were developed as well. Tunnels 5 and 7, although designed and partially constructed, were never completed. Hypervelocity Research Tunnel 8A, was installed in 1974. It has been used for high altitude testing of various re-entry bodies and the space shuttle orbiter (Hastings 1979).

Hypervelocity Tunnel 9 was authorized by Congress in 1966, and essentially completed in 1972. This tunnel is the only one of its kind in the United States, and is unique for having the highest speed, longest flow time, and largest object capacity of any such tunnel in the United States. It has a significantly greater productivity per run than other tunnels.

1 The information on NOL research and development was obtained from unpublished information available at the NSWC in White Oak unless otherwise noted.
thus reducing the cost of data. While other hypervelocity tunnels were limited to run times on the order of tens of milliseconds, Tunnel 9 provided, and still provides, one second run times. Furthermore, this tunnel can accommodate full size models. This tunnel has been invaluable for research and development for all three armed services, and the National Aeronautics and Space Administration (NASA), and it is expected that this tunnel will remain in use at its current site by the U.S. Air Force (Hastings 1979).

Parachutes (Retardation Devices) have been designed, tested, and produced at NOL for dozens of applications including those used on the Space Shuttle, and the Mars Pathfinder.

NUCLEAR WEAPONS

Scientists at the NOL designed and developed many of the Navy's first nuclear weapons. Among these were:

ELSIE I: the Navy's first nuclear weapon for use against land targets, and ELSIE II.
BETTY (Bomb M90): the Navy's first nuclear depth bomb.
LULU: the Navy's second nuclear depth bomb.
HOTPOINT (Mk105): a parachute retarded design similar to LULU.
SUBROC: the Navy's first submarine launched anti-submarine nuclear weapon.

NOL employees also designed and developed arming and fuzing devices for the POLARIS, MINUTEMAN, and TERRIER nuclear weapons. NOL also designed and installed the test equipment to collect shock pressure information on the Bikini underwater shock and air blast nuclear test conducted in 1947, as well as those of the Sandstone tests started in 1948, WIGWAM, WAHOO, & UMBRELLA underwater tests in 1955, and the development of nuclear test simulators.

EXPLOSIVES

NOL scientists invented 9 of the 10 new energetic molecules (explosives) developed since World War II that are now used by the Department of Defense (DOD) for practical use in explosive and propellant devices. For example, the substance labeled PBXW-100 which was developed at NOL, has come into use in all underwater explosives used in defense.

DEGAUSSING

NOL scientists developed the technology and system designs for all the degaussing (demagnetizing) systems for all Navy ships and all magnetic calibration facilities in the United States.

ALTERNATING MAGNETIC (AM) FIELDS

In the 1960s and 1970s, the NOL ran experiments to determine the cause of AM signatures on large naval targets. As a result, the NOL developed AM signature reduction systems which reduced the vulnerability of U.S. and NATO ships and submarines.

METAL ALLOYS

The NOL was the nation's leading research facility in non-magnetic and soft-magnetic alloys after World War II. All of these alloys are easily identified as having been developed at the NOL by the last three letters of their names, "NOL". The products developed included, most significantly, NITINOL, a corrosion resistant, high electrical resistance, strong, "metal with a memory." It has found widespread applications in weapons systems, but is also used commercially in thousands of products, including: eyeglass frames, dentistry products, blood vessel stent, bra underwiring, anti-scald devices for showers, flow regulators in autos, catheter guidewires, ligament and bone attachments, etc. Also developed were NITINOL-60, PYRONOL, WAGONOL, which are all used mainly for defense purposes.

The NOL has also developed a number of soft magnetic metal alloys which have laid the foundation for the soft magnetic materials industry in the United States. Many of these developments were made for use in the Vietnam War, for such devices as magnetic sensors to detect mines, but this research, which began as military research, has spawned many industries in the United States. Some of these applications include magnetic traffic light/highway sensors and weapons detectors at airline gates (developed by agreement with American Airlines). These alloys are also used in transformers, motors, signal processors, memories, recorders (including video tape recorder heads), actuators, etc. Among the alloys
developed were: PARABANOL, ORTHONOL, ALFENOL, APHONOL, and TERFENOL. One of the NOL scientists, Dr. Arthur Clark, worked on magnetic materials which are currently being used by IKEA corporation for use in the manufacture of a new cashier and inventory control system (Caudle, et al. 1997).

BATTERY MATERIALS

The NOL developed many of the battery systems which are widely used today, including improvements to Lithium thermal batteries, and a thermally stable form of silver oxide for use in high-rate silver oxide batteries.

More recent facilities related to nuclear and environmental testing were added to the site during the 1970s and 1980s, including refinements to systems for detection of low observable targets. Reflecting this expanded mission, in 1974 the Naval Ordnance Laboratory was consolidated with the Naval Weapons Laboratory at Dahlgren, Virginia, to become the Naval Surface Weapons Center. The White Oak facility's name was changed to Naval Surface Warfare Center in 1987. Since 1974 (until recent preparations for base closure begun in 1995), the Center's programs have changed in focus from individual weapons design and testing to broader weapons systems, demonstrating "leadership in all aspects of surface ship combat systems engineering and integration analysis" (Greenhorne & O'Mara, Inc. 1992a; Rosenzweig 1995).

There were two major changes in the size of the NOL White Oak land parcel since its creation in the mid-1940s. In 1969, 137 acres at the south-central edge of site were transferred to the Department of the Army for construction of the Harry Diamond Laboratories; there were no buildings related to the NOL on this site when it was transferred (Building Technology Incorporated 1984). The other reduction occurred in 1995, when 22 acres of vacant land in the southeastern corner were transferred to the U.S. Army (Whiteford 1996).
9. Major Bibliographical References

(SEE CONTINUATION SHEET)

10. Geographical Data

Acreage of nominated property 732 acres

Quadrangle name Beltsville, MD

Quadrangle scale 1:24,000

UTM References Do NOT complete UTM references

Zone Easting Northing Zone Easting Northing

Verbal boundary description and justification

(SEE CONTINUATION SHEET)

Ill states and counties for properties overlapping state or county boundaries

<table>
<thead>
<tr>
<th>state</th>
<th>Maryland code</th>
<th>MD county</th>
<th>Montgomery code</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>code</td>
<td>county</td>
<td>Prince George's code</td>
</tr>
</tbody>
</table>

11. Form Prepared by

name/title Christopher Martin, David Berg, Architectural Historians

organization Greenhorne & O'Mara, Inc.

date February 1997

street & number 9001 Edmonston Road

telephone (301) 220-1897

city or town Greenbelt

The Maryland Historic Sites Inventory was officially created by an Act of the Maryland Legislature to be found in the Annotated Code of Maryland, Article 41, Section 181 KA, 1974 supplement.

The survey and inventory are being prepared for information and record purposes only and do not constitute any infringement of individual property rights.

return to: Maryland Historical Trust

DHCP/DHCD

100 Community Place

Crownsville, MD 21032-2023

410-514-7600

PS-2745
9. Major Bibliographical References

References Cited in Sections 7 and 8

Alexis, Karin M.E.

Building Technology Incorporated
1984 Historic Properties Report, Harry Diamond Laboratories, Maryland, and Satellite Installations, Woodbridge Research Facility, Virginia, and Blossom Point Field Test Facility, Maryland.

DeSavage, Bernard
1996 NSWC, White Oak Site Director, interview with Christopher Martin, Greenhorne & O'Mara, Inc., 7 February 1996.

Caudle, Kenneth
1995 Department of Defense, Base Realignment and Closure Transition Coordinator, telephone interview with Christopher Martin, Greenhorne & O'Mara, Inc. 8 May 1996.

Caudle, Kenneth, Betty Gay, John Tino, and Bob Voisinet

Greenhorne & O'Mara, Inc.

Hamlin, George L.

Hamlin, George L.

Hastings, Sam M.

Marion, Richard
1996a Interview with Christopher Martin, Greenhorne & O'Mara, Inc., 27 March 1996.

Maryland-National Capital Park & Planning Commission
1995 Historic Resources of the Eastern Montgomery County Master Plan Areas. Silver Spring: Montgomery County Planning Department.

Miller, Joseph
1996 Correspondence with Christopher Martin, Greenhorne & O'Mara, Inc., 3 April 1996.

Public Hearing (Preliminary) Draft, White Oak Master Plan
1995 Silver Spring: Montgomery County Planning Department.

Rosenzweig, Mark

Sherman, Sandy
1988 *Memoirs of Dr. Rudolph Hermann,* based on interviews with Sandy Sherman April 22 through July 2, 1988, Huntsville, Alabama. Available at the NSWC, White Oak Public Affairs Office.

Smaldone, Joseph P.

U.S. Naval Ordnance Laboratory (NOL)
1971 *The Oak Leaf,* "NOL's HNS is on the Moon!"

Whiteford, Scott
1996 Director, Real Estate Office, NSWC White Oak, telephone interview with Christopher Martin, Greenhorne & O'Mara, Inc. 8 May 1996.
Related References, Including Those Cited in Section 6

Cisna, Paul, June Evans, and James Sorenson

Ebasco Environmental

Hunter Research

Kise Franks and Straw

Maryland-National Capital Park and Planning Commission
1992 Historic Sites and Districts Plan, Prince George's County. n.p.

Rosenzweig, Mark S.

U.S. Army Corps of Engineers
Verbal Boundary Description and Justification

The proposed historic district boundary is identical with the current property boundary, which includes the initial NOL parcel. This property has experienced no major additions and only two major reductions in size since its creation; the first reduction was in 1969 when 137 acres at the south-central edge of site were transferred to the Department of the Army for construction of the Harry Diamond Laboratories; there were no buildings related to the NOL on this site when it was transferred (Building Technology Incorporated 1984). The other reduction occurred in 1995, when 22 acres of vacant land in the southeastern corner were transferred to the U.S. Army (Whiteford 1996). The proposed historic district boundary includes the current property boundary, encompassing 732 acres. For graphical representation, see the additional Section 10 Continuation Sheet showing the "Naval Ordnance Laboratory Survey [i.e. Historic] District Boundary."
Maryland Comprehensive Historic Preservation Plan Data

Geographic Organization: Piedmont, Western Shore

Chronological/Development Periods: Modern Period (A.D. 1930-Present)

Historic Period Themes: Military (World War II, Post WW II/Cold War) Engineering/Invention (Military-Civilian) Architecture, Landscape Architecture, Community Planning

Resource Type: Military Weapons Research, Testing & Development Facility

Site/Data Types: Standing Structures Landscape Features Town/City/Community Plans Objects Oral History

Note: All buildings are viewed as important in the areas of military, scientific, engineering, and invention significance as each building contributed to achieving the mission of NOL. Areas 100, 200, and 400 have, in addition, architectural and landscape architecture significance. The golf course has landscape architecture significance.

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Admin Bldg-Lab Base</td>
<td>Bldg</td>
<td>C3</td>
<td>132116</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>North Laboratory</td>
<td>Bldg</td>
<td>C3</td>
<td>59800</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>South Laboratory</td>
<td>Bldg</td>
<td>D3</td>
<td>69266</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>East Laboratory</td>
<td>Bldg</td>
<td>C3</td>
<td>109174</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Cafeteria/Auditorium</td>
<td>Bldg</td>
<td>C3</td>
<td>47142</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>Flagpoles</td>
<td>Strc</td>
<td>C3</td>
<td>3 EA</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Anchor Monument</td>
<td>Strc</td>
<td>C3</td>
<td>1 EA</td>
<td>1944</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>Comfort Station</td>
<td>Bldg</td>
<td>C2</td>
<td>650</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>Pumping Station/Wtr</td>
<td>Util</td>
<td>C3</td>
<td>1000 GM</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>Underground Pumping Station</td>
<td>Util</td>
<td>D3</td>
<td>1000 GM</td>
<td>1970</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>Billboard</td>
<td>Strc</td>
<td>BAS</td>
<td>2 EA</td>
<td>1979</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>Covered Walkway South</td>
<td>Strc</td>
<td>D3</td>
<td>347 SY</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>Covered Walkway North</td>
<td>Strc</td>
<td>C2</td>
<td>809 SY</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>Sentry House</td>
<td>Bldg</td>
<td>C3</td>
<td>60</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>Construction Office</td>
<td>Bldg</td>
<td>D2</td>
<td>588</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>Ordnance Environmental Lab</td>
<td>Bldg</td>
<td>C3</td>
<td>95786</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>17</td>
<td>Security Office</td>
<td>Bldg</td>
<td>D3</td>
<td>200</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>18</td>
<td>Scale House</td>
<td>Bldg</td>
<td>C3</td>
<td>1 EA</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>19</td>
<td>Sentry House</td>
<td>Bldg</td>
<td>D3</td>
<td>60</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>Magnetic Materials Lab</td>
<td>Bldg</td>
<td>B3</td>
<td>20735</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>21</td>
<td>Technical-Public Works Shop</td>
<td>Bldg</td>
<td>C3</td>
<td>130700</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>22</td>
<td>Rubber Processing Lab</td>
<td>Bldg</td>
<td>B3</td>
<td>1000</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>Storage/Packaging</td>
<td>Bldg</td>
<td>B3</td>
<td>4360</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>Underwater Weapons Asby Bldg</td>
<td>Bldg</td>
<td>C3</td>
<td>20665</td>
<td>1954</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>Ordnance Assembly Building</td>
<td>Bldg</td>
<td>B3</td>
<td>4808</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>26</td>
<td>Explosive Laboratory</td>
<td>Bldg</td>
<td>D3</td>
<td>32998</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>27</td>
<td>Solvent Storage</td>
<td>Bldg</td>
<td>D3</td>
<td>64</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>28</td>
<td>Outdoor Fitness Course</td>
<td>Strc</td>
<td>C4</td>
<td>1 EA</td>
<td>1982</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>Sot Storage Area</td>
<td>Strc</td>
<td>C3</td>
<td>175 SY</td>
<td>1967</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>30</td>
<td>Storage Pad</td>
<td>Strc</td>
<td>C3</td>
<td>361 SY</td>
<td>1967</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>31</td>
<td>Picnic and Play Area</td>
<td>Strc</td>
<td>D4</td>
<td>1 EA</td>
<td>1974</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>32</td>
<td>Picnic and Play Area</td>
<td>Strc</td>
<td>C2</td>
<td>1EA</td>
<td>1974</td>
<td>G</td>
<td>N</td>
</tr>
</tbody>
</table>
List of Facilities at NSWCDD - White Oak

Property Records Summary (Adapted)

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Stories</th>
<th>Area/ Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/ Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Fuze-Wave Trace Laboratory</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>4234 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>41</td>
<td>Acoustics Laboratory</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>1200 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>42</td>
<td>Garage-Storage Qtrs A-B</td>
<td>Bldg</td>
<td>E5</td>
<td>1</td>
<td>1288 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>43</td>
<td>Garage Qtrs C</td>
<td>Bldg</td>
<td>B2</td>
<td>1</td>
<td>240 SF</td>
<td>1949</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>44</td>
<td>Garage Qtrs M</td>
<td>Bldg</td>
<td>C4</td>
<td>1</td>
<td>200 SF</td>
<td>1949</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>45</td>
<td>Softball Field</td>
<td>Strc</td>
<td>C4</td>
<td>0</td>
<td>1 EA</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>46</td>
<td>Lift Station</td>
<td>Util</td>
<td>C2</td>
<td>0</td>
<td>70 GM</td>
<td>1974</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>47</td>
<td>Tennis Court</td>
<td>Strc</td>
<td>C4</td>
<td>0</td>
<td>1 EA</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>48</td>
<td>Golf Equipment Storage Shed</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>240 SF</td>
<td>1988</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>49</td>
<td>Softball Field</td>
<td>Strc</td>
<td>D4</td>
<td>0</td>
<td>1 EA</td>
<td>1982</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>50</td>
<td>Recreation Pavillion</td>
<td>Strc</td>
<td>D4</td>
<td>1</td>
<td>1134 SF</td>
<td>1986</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>51</td>
<td>Golf Equipment Storage Shed</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>1152 SF</td>
<td>1988</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>52</td>
<td>Security Computer Info Fac</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>2091 SF</td>
<td>1992</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>53</td>
<td>Detection Sys Lab (Beartrap)</td>
<td>Bldg</td>
<td>D3</td>
<td>1</td>
<td>2091 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>Utility Building</td>
<td>Bldg</td>
<td>D3</td>
<td>1</td>
<td>168 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>55</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>D4</td>
<td>1</td>
<td>320 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>56</td>
<td>Golf Starter House</td>
<td>Bldg</td>
<td>C2</td>
<td>1</td>
<td>64 SF</td>
<td>1992</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>57</td>
<td>Sentry House</td>
<td>Bldg</td>
<td>B2</td>
<td>1</td>
<td>32 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>58</td>
<td>X-Ray and Plastics Lab</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>22051 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>59</td>
<td>Laboratory-Technical Shop</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>34323 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>60</td>
<td>Lumber Storage</td>
<td>Bldg</td>
<td>C2</td>
<td>1</td>
<td>3757 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>61</td>
<td>Paint and Oil Storage</td>
<td>Bldg</td>
<td>C3</td>
<td>1</td>
<td>800 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>62</td>
<td>Refrigerated Storage for R</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>816 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>63</td>
<td>Refrigerated Storage</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>1647 SF</td>
<td>1950</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>64</td>
<td>General Storage</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>576 SF</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>65</td>
<td>Solvent Storage Building</td>
<td>Bldg</td>
<td>C3</td>
<td>1</td>
<td>180 SF</td>
<td>1962</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>Gas Cyl Storage</td>
<td>Bldg</td>
<td>C3</td>
<td>1</td>
<td>960 SF</td>
<td>1979</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>67</td>
<td>Sanitary Sewage System</td>
<td>Util</td>
<td>C3</td>
<td>0</td>
<td>15437 LF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>68</td>
<td>Expl Damage Branch Ops</td>
<td>Bldg</td>
<td>C4</td>
<td>2</td>
<td>31099 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>69</td>
<td>Storage</td>
<td>Bldg</td>
<td>C4</td>
<td>1</td>
<td>117 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>70</td>
<td>Sta for 90</td>
<td>Util</td>
<td>C4</td>
<td>0</td>
<td>15000 KV</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>71</td>
<td>Wind Direction Indicator</td>
<td>Strc</td>
<td>C3</td>
<td>0</td>
<td>1 EA</td>
<td>1972</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>72</td>
<td>40000 GA Fuel Oil Tank</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>40000 GA</td>
<td>1976</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>73</td>
<td>40000 GA Fuel Oil Tank</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>40000 GA</td>
<td>1978</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>74</td>
<td>40000 GA Fuel Oil Tank</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>40000 GA</td>
<td>1978</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>75</td>
<td>40000 GA Fuel Oil Tank</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>40000 GA</td>
<td>1978</td>
<td>G</td>
<td>N</td>
</tr>
</tbody>
</table>

- Table continued...

Note: The table continues with additional facilities and their details. Each row provides the facility number, name, type, map grid, stories, area, year built, condition/integrity, and recommendation. The data is structured to reflect the layout of the facilities at White Oak Property Records Summary.
<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Stories</th>
<th>Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Garage-Fire House</td>
<td>Bldg</td>
<td>B3</td>
<td>2</td>
<td>23745 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>101</td>
<td>Boiler Plant</td>
<td>Bldg</td>
<td>B3</td>
<td>2</td>
<td>7934 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>101-1</td>
<td>Truck Spill Containment Dike</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>6 OL</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>101-2</td>
<td>Truck Spill Containment Dike</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>4 OL</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>101-3</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>40000 GA</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>101-4</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>40000 GA</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>101-A</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>B4</td>
<td>1</td>
<td>560 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>104</td>
<td>Pest Control Office</td>
<td>Bldg</td>
<td>B5</td>
<td>1</td>
<td>308 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>108</td>
<td>Incinerator Building</td>
<td>Bldg</td>
<td>B5</td>
<td>2</td>
<td>1088 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>109</td>
<td>Vehicle-Equipment Shed</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>2800 SF</td>
<td>1949</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>110</td>
<td>Vehicle-Equipment Shed</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>3065 SF</td>
<td>1949</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>111</td>
<td>Equipment Shed</td>
<td>Bldg</td>
<td>B4</td>
<td>1</td>
<td>4680 SF</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>112</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>B4</td>
<td>1</td>
<td>4141 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>112-1</td>
<td>Waste Spill Containment Dike</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>8 SY</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>113</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>B4</td>
<td>1</td>
<td>4141 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>114</td>
<td>Storage Bin</td>
<td>Strc</td>
<td>C5</td>
<td>1</td>
<td>117 SY</td>
<td>1954</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>115</td>
<td>Storage Shed PW Maint</td>
<td>Bldg</td>
<td>C5</td>
<td>1</td>
<td>816 SF</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>116</td>
<td>Transformer Station for 101A</td>
<td>Uti</td>
<td>B4</td>
<td>0</td>
<td>150 KV</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>117</td>
<td>Heating Fuel Pump House</td>
<td>Strc</td>
<td>B3</td>
<td>1</td>
<td>4 OL</td>
<td>1964</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>118</td>
<td>Storage Bldg Mats PW Maint</td>
<td>Bldg</td>
<td>B5</td>
<td>1</td>
<td>48 SF</td>
<td>1942</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>121</td>
<td>Tank for Diesel Fuel</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>1000 GA</td>
<td>1949</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>125</td>
<td>Test Equip Storage for R/D</td>
<td>Bldg</td>
<td>B4</td>
<td>0</td>
<td>500 SF</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>129</td>
<td>Filling Station</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>3 OL</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>130</td>
<td>Vulnerability & Hardening Fac</td>
<td>Bldg</td>
<td>C5</td>
<td>2</td>
<td>22757 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>132</td>
<td>DNA Casino Facility</td>
<td>Bldg</td>
<td>C5</td>
<td>2</td>
<td>39202 SF</td>
<td>1974</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>132-2</td>
<td>Storage Shed for 132</td>
<td>Bldg</td>
<td>C5</td>
<td>1</td>
<td>1250 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>134</td>
<td>Transformer Station for 132</td>
<td>Uti</td>
<td>C5</td>
<td>0</td>
<td>1500 KV</td>
<td>1974</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>135</td>
<td>Standby Generator Bldg</td>
<td>Bldg</td>
<td>C5</td>
<td>1</td>
<td>400 SF</td>
<td>1975</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>139</td>
<td>Tank for Gasoline Service</td>
<td>Strc</td>
<td>B3</td>
<td>0</td>
<td>10000 GA</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>140</td>
<td>Salt Storage Building</td>
<td>Bldg</td>
<td>B5</td>
<td>1</td>
<td>2826 SF</td>
<td>1986</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>142</td>
<td>Truck Spill Containment Dike</td>
<td>Strc</td>
<td>C5</td>
<td>0</td>
<td>1 OL</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>144</td>
<td>Trash Transfer Station</td>
<td>Strc</td>
<td>B4</td>
<td>0</td>
<td>1 EA</td>
<td>1975</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>147</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>C5</td>
<td>0</td>
<td>10000 GA</td>
<td>1994</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>148</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>C5</td>
<td>0</td>
<td>10000 GA</td>
<td>1994</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>150</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>D5</td>
<td>1</td>
<td>5050 SF</td>
<td>1987</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>151</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>D5</td>
<td>1</td>
<td>3700 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>Facility Number</td>
<td>Facility Name</td>
<td>Facility Type</td>
<td>Map Grid (Fig. 7.3)</td>
<td>Stories</td>
<td>Area</td>
<td>Year Built</td>
<td>Condition/ Integ.</td>
<td>Recommendation Contrib./Non-Contrib.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>201</td>
<td>Operations Lab Boiler Plant</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>11595 SF</td>
<td>1945</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>201-1</td>
<td>Heating Fuel Storage</td>
<td>Strc</td>
<td>C7</td>
<td>0</td>
<td>1500 GA</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>201-3</td>
<td>Contaminated Fuel Storage</td>
<td>Strc</td>
<td>C7</td>
<td>0</td>
<td>7 BL</td>
<td>1976</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>202</td>
<td>Standard Lab</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>2728 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>203</td>
<td>Spherical Field Lab</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>4346 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>203-A</td>
<td>Compensation Sensor Housing</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>120 SF</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>204</td>
<td>Long Field Laboratory</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>2813 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>205</td>
<td>Large Projects Laboratory</td>
<td>Bldg</td>
<td>C7</td>
<td>2</td>
<td>3713 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>206</td>
<td>Model Laboratory</td>
<td>Bldg</td>
<td>C7</td>
<td>2</td>
<td>5029 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>207</td>
<td>Antenna Range Building</td>
<td>Bldg</td>
<td>C6</td>
<td>1</td>
<td>1271 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>208</td>
<td>Solenoid Lab</td>
<td>Bldg</td>
<td>D7</td>
<td>1</td>
<td>1020 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>209</td>
<td>Gradheim Laboratory</td>
<td>Bldg</td>
<td>D6</td>
<td>1</td>
<td>672 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>210</td>
<td>Balance Lab</td>
<td>Bldg</td>
<td>D7</td>
<td>1</td>
<td>1050 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>212</td>
<td>Antenna Range</td>
<td>Strc</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>213</td>
<td>Transformer Station for 201</td>
<td>Util</td>
<td>C7</td>
<td>0</td>
<td>300 KV</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>214</td>
<td>Test Equip Storage Shed</td>
<td>Bldg</td>
<td>C6</td>
<td>1</td>
<td>96 SF</td>
<td>1961</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>215</td>
<td>Test Equip Storage Shed</td>
<td>Bldg</td>
<td>C7</td>
<td>1</td>
<td>63 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>217</td>
<td>Hydroacoustics Facility</td>
<td>Bldg</td>
<td>D5</td>
<td>1</td>
<td>8142 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>217-1</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>D5</td>
<td>0</td>
<td>550 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>219</td>
<td>Transformer Station for 217</td>
<td>Util</td>
<td>D5</td>
<td>0</td>
<td>150 KV</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>25T-1</td>
<td>ASWCS Computer Annex</td>
<td>Bldg</td>
<td>C3</td>
<td>1</td>
<td>1200 SF</td>
<td>1992</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>300</td>
<td>Synthesis/Formulations Opns</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>1656 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>301</td>
<td>Repetitive Impact Test Fac</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>1036 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>302</td>
<td>Storage</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>760 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>303</td>
<td>Temp & Humidity Test Fac</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>1520 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>304</td>
<td>Mechanical Properties Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>953 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>304-1</td>
<td>Storage Shed 304</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>150 SF</td>
<td>1959</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>304-3</td>
<td>Chemical Storage Shed</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>48 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>304-4</td>
<td>Chemical Storage Shed</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>48 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>305</td>
<td>Physical Properties Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>766 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>305-2</td>
<td>Magazine</td>
<td>Strc</td>
<td>B10</td>
<td>1</td>
<td>100 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>305-3</td>
<td>Test Equip Storage 305</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>560 SF</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>305-5</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>1000 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>305-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>187 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>306</td>
<td>Vibration Test Facility</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>3416 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>Facility Number</td>
<td>Facility Name</td>
<td>Facility Type</td>
<td>Map Grid (Fig. 7.3)</td>
<td>Stories</td>
<td>Area (sq. ft.)</td>
<td>Year Built</td>
<td>Condition/Integrity</td>
<td>Recommendation Contrib./Non-Contrib.</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>306-A</td>
<td>Storage</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>140 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>306-B</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>307</td>
<td>Warheads Operations</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>1033 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>307-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>308</td>
<td>Warhead Development Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>1377 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>308-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>309-1</td>
<td>Altitude Blast Chamber</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>170 SF</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>209-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>310-A \chemical Laboratory</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>3828 SF</td>
<td>1948</td>
<td>G (Altered)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>310-B \instrument Laboratory</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>462 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>310-C</td>
<td>Chemical Storage/Boiler</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>165 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>310-D</td>
<td>Chemical/Equipment Storage</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>225 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>311</td>
<td>Explosives Chemistry Lab</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>2015 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>311-1</td>
<td>Test Equip Storage 311</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>180 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>311-3</td>
<td>Storage</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>49 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>312</td>
<td>XPL Quality Control Lab</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>1470 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>312-1</td>
<td>Storage Shed</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>36 SF</td>
<td>1958</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>312-2</td>
<td>Chemical Chamber-312</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>36 SF</td>
<td>1958</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>312-3</td>
<td>Storage Shed</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>36 SF</td>
<td>1958</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>312-4</td>
<td>Expl Storage Magazine</td>
<td>Strc</td>
<td>D10</td>
<td>1</td>
<td>49 SF</td>
<td>1958</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>312-6</td>
<td>Explosives Storage Magazine</td>
<td>Strc</td>
<td>D10</td>
<td>1</td>
<td>49 SF</td>
<td>0</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>312-7</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>D10</td>
<td>0</td>
<td>6000 GA</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>312-A</td>
<td>Compressor Bldg</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>154 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>312-B</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>360 SF</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>313</td>
<td>Health Physics Building</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>480 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>313-1</td>
<td>Storage</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>35 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>313-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>77 SF</td>
<td>1955</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>314</td>
<td>Bombproof: Warhd Concept Lab</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>1188 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>314-2</td>
<td>Storage Trailer</td>
<td>Bldg</td>
<td>B9</td>
<td>1</td>
<td>360 SF</td>
<td>1968</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>314-3</td>
<td>Magazine</td>
<td>Strc</td>
<td>D10</td>
<td>1</td>
<td>49 SF</td>
<td>1989</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>315</td>
<td>Warheads Concept Opns</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>1058 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>315-1</td>
<td>Expl Temp Control Magazine</td>
<td>Strc</td>
<td>D10</td>
<td>0</td>
<td>48 SF</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>315-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>316</td>
<td>Charge Assembly Bldg</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>588 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>317</td>
<td>Bombproof: Fragmt Impact Lab</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>1538 SF</td>
<td>1948</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>317-1</td>
<td>Component Fabrication Stg</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>256 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 7.1
List of Facilities at NSWCDD - White Oak Property Records Summary (Adapted)

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Type</th>
<th>Map Grid</th>
<th>Stories</th>
<th>Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/ Integrity</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>Expl Pressing/Machining Bldg</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>3657 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>318-1</td>
<td>Expl Temp Controlled Magazi</td>
<td>Strc</td>
<td>D10</td>
<td>1</td>
<td>56 SF</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>319</td>
<td>Detonation Research Opns</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>1008 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>319-1</td>
<td>Storage Shed</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>96 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>319-2</td>
<td>Warhead Concept Opns Trlr</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>600 SF</td>
<td>1983</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>319-3</td>
<td>Detonation Research Opns Trlr</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>600 SF</td>
<td>1983</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>319-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>320</td>
<td>40FT Guided Drop Tower</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>1 EA</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>321</td>
<td>Fracture Studies Laboratory</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>766 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>321-1</td>
<td>Test Equip Storage 324</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>64 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>322</td>
<td>Detonation Physics Opns</td>
<td>Bldg</td>
<td>B10</td>
<td>3</td>
<td>13500 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>323-2</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>6000 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>324</td>
<td>Bombproof Detonation Physics</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>1089 SF</td>
<td>1960</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>324-1</td>
<td>Storage Shed (503)</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>104 SF</td>
<td>1948</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>324-A</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>77 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>325</td>
<td>Bombproof: Sensitivities St</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>1501 SF</td>
<td>1951</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>326</td>
<td>Charge Assembly Bldg</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>840 SF</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>327</td>
<td>Bombproof: Initiation Rsch</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>5203 SF</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>328</td>
<td>Ignition Research lab</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>3343 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>328-3</td>
<td>Service Magazine</td>
<td>Strc</td>
<td>C10</td>
<td>1</td>
<td>16 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>328-4</td>
<td>Staging/Shop/Storage Bldg</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>560 SF</td>
<td>1983</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>328-5</td>
<td>Retaining Wall</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>50 LF</td>
<td>1983</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>328-6</td>
<td>Field Test Staging Pad</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>343 SY</td>
<td>1983</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>329</td>
<td>Change House</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>847 SF</td>
<td>1982</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>330</td>
<td>40FT Free Fall Drop Tower</td>
<td>Strc</td>
<td>C10</td>
<td>1</td>
<td>1 EA</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>331</td>
<td>Bombproof booster/ Warhd Ini</td>
<td>Strc</td>
<td>C9</td>
<td>0</td>
<td>1 EA</td>
<td>1950</td>
<td>F (Altered)</td>
<td>C</td>
</tr>
<tr>
<td>332</td>
<td>Bombproof: Control Bldg</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>176 SF</td>
<td>1956</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>332-1</td>
<td>Chemical Chamber-332</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>36 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>333</td>
<td>Propellant Research Bldg</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>441 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>333-1</td>
<td>Office Annex to Bldg 333</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>240 SF</td>
<td>1968</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>334</td>
<td>Vacuum Tank Facility</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>772 SF</td>
<td>1950</td>
<td>F (Altered)</td>
<td>C</td>
</tr>
<tr>
<td>335</td>
<td>Expl Process Control Bldg</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>144 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>335-1</td>
<td>Explosive Processing Bays</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>556 SF</td>
<td>1950</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>335-2</td>
<td>Explosive Processing Bays</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>352 SF</td>
<td>1950</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>335-3</td>
<td>Inert Storage</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>110 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 7.1
List of Facilities at NSWCDD - White Oak
Property Records Summary (Adapted)

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Stories</th>
<th>Area</th>
<th>Year Built</th>
<th>Condition/ Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>335-4</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>D9</td>
<td>0</td>
<td>550 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>335-A</td>
<td>Boiler House-335-1-2</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>77 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>336</td>
<td>Explosion Damage</td>
<td>Bldg</td>
<td>C10</td>
<td>2</td>
<td>7000 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>336-1</td>
<td>Staging Bldg</td>
<td>Bldg</td>
<td>C10</td>
<td>0</td>
<td>1500 SF</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>336-3</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>560 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>338</td>
<td>Explosive Magazine</td>
<td>Strc</td>
<td>D9</td>
<td>0</td>
<td>226 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>339</td>
<td>Detonator/Lead Test FAC</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>1246 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>339-1</td>
<td>Bottle Storage Shelter-339</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>38 SF</td>
<td>1962</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>339-2</td>
<td>Bottle Gas Storage</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>36 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>340</td>
<td>HI Press Physics & Spec Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>952 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>340-1</td>
<td>Storage Shed</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>80 SF</td>
<td>1964</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>341</td>
<td>Fire Ptcn Pumping Station</td>
<td>Util</td>
<td>C10</td>
<td>0</td>
<td>1000 GM</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>342</td>
<td>Fire Water Storage Tank</td>
<td>Util</td>
<td>C10</td>
<td>0</td>
<td>10000 GA</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>343</td>
<td>Chemical Laboratory</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>3600 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>344</td>
<td>Physical Properties Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>861 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>345</td>
<td>Surveillance Studies Lab</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>646 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>348</td>
<td>Sensitivities Study Opns</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>1027 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>348-1</td>
<td>Shop</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>96 SF</td>
<td>1950</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>348-2</td>
<td>Sensitivities Study Opn Trlr</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>600 SF</td>
<td>1970</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>349</td>
<td>Explosives Applications Opns</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>1656 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>351</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>266 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>352</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>266 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>353</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>266 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>354</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>C9</td>
<td>1</td>
<td>266 SF</td>
<td>1951</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>356</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>108 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>357</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>192 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>358</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B9</td>
<td>1</td>
<td>108 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>359</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>C9</td>
<td>1</td>
<td>108 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>360</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>C9</td>
<td>1</td>
<td>192 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>362</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>C9</td>
<td>0</td>
<td>186 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>363</td>
<td>Fuse Evaluation FAC</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>3504 SF</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>363-1</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>D10</td>
<td>0</td>
<td>550 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>364</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B10</td>
<td>1</td>
<td>187 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>365</td>
<td>Bldg 365 Transformer Station</td>
<td>Util</td>
<td>B10</td>
<td>0</td>
<td>100 KV</td>
<td>1952</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>366</td>
<td>Explosives Magazine</td>
<td>Strc</td>
<td>B10</td>
<td>1</td>
<td>493 SF</td>
<td>1954</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>367</td>
<td>Well House</td>
<td>Util</td>
<td>C10</td>
<td>1</td>
<td>22 KG</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>Facility Number</td>
<td>Facility Name</td>
<td>Facility Type</td>
<td>Map Grid (Fig. 7.3)</td>
<td>Stories</td>
<td>Area Area (sq. ft.)</td>
<td>Year Built</td>
<td>Condition/ Integrity</td>
<td>Recommendation Contrib./Non-Contrib.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>368</td>
<td>Boiler House</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>780 SF</td>
<td>1953</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>368-2</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>10000 GA</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>369</td>
<td>Temp & Humidity Test Fac</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>364 SF</td>
<td>1963</td>
<td>F (Altered)</td>
<td>C</td>
</tr>
<tr>
<td>369-1</td>
<td>Hi-Cap Survell Barricade</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>1 EA</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>369-4</td>
<td>Hi-Cap Survell Barricade</td>
<td>Strc</td>
<td>C11</td>
<td>0</td>
<td>0 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>371</td>
<td>Gun Turret Expl Firing Fac</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>1 EA</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>372</td>
<td>Mechanical Output Test Bldg</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>224 SF</td>
<td>1955</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>373</td>
<td>Control House for 372</td>
<td>Bldg</td>
<td>C9</td>
<td>1</td>
<td>150 SF</td>
<td>1955</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>375</td>
<td>Altitude Blast Chamber</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>432 SF</td>
<td>1959</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>375-1</td>
<td>Storage Shed</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>63 SF</td>
<td>1975</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>376</td>
<td>Air Blast Field Lab</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>1656 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>379</td>
<td>V T Fuze Instrumentation Lab</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>192 SF</td>
<td>1959</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>379-1</td>
<td>Radar Cross Section Range</td>
<td>Strc</td>
<td>B11</td>
<td>0</td>
<td>1 EA</td>
<td>1974</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>380</td>
<td>EMR Test Equipment Building</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>375 SF</td>
<td>1988</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>381</td>
<td>Transformer Station for 301</td>
<td>Util</td>
<td>C10</td>
<td>0</td>
<td>300 KV</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>382</td>
<td>Target Preparation lab</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>0 EA</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>383</td>
<td>Conical Shock Tube</td>
<td>Strc</td>
<td>C10</td>
<td>0</td>
<td>1 EA</td>
<td>1961</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>385</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>180 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>386</td>
<td>Charge Assy & Condtng Bldg</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>312 SF</td>
<td>1962</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>387</td>
<td>Hi/Grav/Tk Centrifuge Pit</td>
<td>Strc</td>
<td>C11</td>
<td>0</td>
<td>225 LF</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>387-1</td>
<td>Battery Storage</td>
<td>Bldg</td>
<td>C11</td>
<td>1</td>
<td>56 SF</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>388</td>
<td>Hi/Grav/Tk Centri Control</td>
<td>Strc</td>
<td>C11</td>
<td>0</td>
<td>1 EA</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>389</td>
<td>Hi/Grav/Tk Centri Stor Bldg</td>
<td>Bldg</td>
<td>C11</td>
<td>1</td>
<td>640 SF</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>390</td>
<td>Explosive Conditioning</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>1 EA</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>391</td>
<td>Storage Bldg</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>192 SF</td>
<td>1964</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>392</td>
<td>Firing Shield</td>
<td>Strc</td>
<td>B10</td>
<td>0</td>
<td>1 EA</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>395</td>
<td>Compressor Shed</td>
<td>Bldg</td>
<td>D9</td>
<td>1</td>
<td>143 SF</td>
<td>1992</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>401</td>
<td>1000ft Hyperballistics Rang</td>
<td>Strc</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>402</td>
<td>Supersonic Wind Tunnel Bldg</td>
<td>Bldg</td>
<td>B6</td>
<td>2</td>
<td>50715 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>403</td>
<td>Conditionous Wind Tunnel Bldg</td>
<td>Bldg</td>
<td>B6</td>
<td>2</td>
<td>20670 SF</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>404</td>
<td>Substation Building</td>
<td>Util</td>
<td>B6</td>
<td>1</td>
<td>1204 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>405</td>
<td>Combat Sys Integratn Lab</td>
<td>Bldg</td>
<td>B6</td>
<td>2</td>
<td>58186 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>406</td>
<td>Hypersonic Tunnel Building</td>
<td>Bldg</td>
<td>B6</td>
<td>2</td>
<td>18836 SF</td>
<td>1957</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>407</td>
<td>HP Vertical Bottle Pit</td>
<td>Bldg</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1955</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>408</td>
<td>HP Horizontal Bottle Pit</td>
<td>Strc</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1955</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>409</td>
<td>Undersea Weapons Tank</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>1 EA</td>
<td>1956</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 7.1

List of Facilities at NSWCDD - White Oak

Property Records Summary (Adapted)

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Stories</th>
<th>Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/ Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>Tank Filtration Plant</td>
<td>Bldg</td>
<td>B7</td>
<td>1</td>
<td>624 SF</td>
<td>1956</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>411</td>
<td>ACFT/Flight RD&T Building</td>
<td>Bldg</td>
<td>B6</td>
<td>2</td>
<td>12490 SF</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>411-1</td>
<td>Transformer Station for 411</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>450 KV</td>
<td>1970</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>413</td>
<td>Propane Storage Tank</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>1 EA</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>414</td>
<td>Propane Vaporizer Facility</td>
<td>Bldg</td>
<td>B6</td>
<td>1</td>
<td>225 SF</td>
<td>1958</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>416</td>
<td>Bldg 406 Transformer Station</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>4500 KV</td>
<td>1957</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>418</td>
<td>Air Cond Plant for 402 & 40</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>700 TN</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>419</td>
<td>Transformer Station for 402</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>3500 KV</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>420</td>
<td>Transformer Station for 403</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>9365 KV</td>
<td>1950</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>421</td>
<td>Transformer Sta for 409</td>
<td>Util</td>
<td>B7</td>
<td>0</td>
<td>225 KV</td>
<td>1956</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>422</td>
<td>Dahlgren Rd Bridge Steel</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>158 SY</td>
<td>1916</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>423</td>
<td>Bridge Wooden</td>
<td>Strc</td>
<td>A7</td>
<td>0</td>
<td>53 SY</td>
<td>1945</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>424</td>
<td>Radar Engineering Branch</td>
<td>Bldg</td>
<td>B6</td>
<td>1</td>
<td>2640 SF</td>
<td>1961</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>425</td>
<td>Substation</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>1500 KV</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>426</td>
<td>Transformer Sta for 424</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>3023 KV</td>
<td>1961</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>427</td>
<td>Hydroballistics Tank</td>
<td>Strc</td>
<td>B7</td>
<td>8</td>
<td>81270 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>428</td>
<td>Hydroballistics Water Sto T</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>1750000 GA</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>428-1</td>
<td>Pumping Station</td>
<td>Util</td>
<td>B7</td>
<td>1</td>
<td>144 SF</td>
<td>1982</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>429</td>
<td>Sup Nit Fac Btl Pit</td>
<td>Strc</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>430</td>
<td>Hypervelocity Wind Tunnel</td>
<td>Bldg</td>
<td>B7</td>
<td>2</td>
<td>26308 SF</td>
<td>1972</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>430-1</td>
<td>Retaining Wall</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>47 LF</td>
<td>1977</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>431</td>
<td>Tunnel 9 Vacuum Sphere</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>1 EA</td>
<td>1970</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>432</td>
<td>13,200 GA LN2 Tank</td>
<td>Util</td>
<td>B6</td>
<td>0</td>
<td>1 EA</td>
<td>1975</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>433</td>
<td>Shelter Grass Cutting Contr</td>
<td>Bldg</td>
<td>B6</td>
<td>1</td>
<td>525 SF</td>
<td>1972</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>435</td>
<td>Substation Building</td>
<td>Bldg</td>
<td>B6</td>
<td>1</td>
<td>336 SF</td>
<td>1970</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>436</td>
<td>Lubricant Storage</td>
<td>Strc</td>
<td>B6</td>
<td>0</td>
<td>2711 GA</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>437</td>
<td>Stairway to Sewer Outfall</td>
<td>Strc</td>
<td>B7</td>
<td>0</td>
<td>165 SY</td>
<td>1977</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>501</td>
<td>Hazardous Mat Disposal Stor</td>
<td>Strc</td>
<td>B11</td>
<td>1</td>
<td>322 SY</td>
<td>1951</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>506</td>
<td>Battery Storage</td>
<td>Bldg</td>
<td>C11</td>
<td>1</td>
<td>150 SF</td>
<td>1951</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>508</td>
<td>Waste Chemical Storage</td>
<td>Strc</td>
<td>B11</td>
<td>1</td>
<td>300 SY</td>
<td>1981</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>509</td>
<td>Chemical Storage Facility</td>
<td>Strc</td>
<td>B11</td>
<td>1</td>
<td>100 SY</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>510</td>
<td>Neutron Calibration Facility</td>
<td>Strc</td>
<td>A10</td>
<td>1</td>
<td>1960 SF</td>
<td>1989</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>609</td>
<td>Retaining Wall</td>
<td>Strc</td>
<td>D8</td>
<td>0</td>
<td>59 SL</td>
<td>1982</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>610</td>
<td>Synthesis/Formulation Opns</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>1656 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>611</td>
<td>Shock Testing Facility Bldg</td>
<td>Bldg</td>
<td>D8</td>
<td>1</td>
<td>4713 SF</td>
<td>1963</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>611-2</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>D8</td>
<td>0</td>
<td>550 GA</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>Facility Number</td>
<td>Facility Name</td>
<td>Facility Type</td>
<td>Map Grid (Fig. 7.3)</td>
<td>Stories</td>
<td>Area (sq. ft.)</td>
<td>Year Built</td>
<td>Condition/ Integrity</td>
<td>Recommendation Contrib./Non-Contrib.</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>613</td>
<td>Hi Energy Matl Process Devlp</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>3450 SF</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-1</td>
<td>Fuel Storage for 613</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>192 SF</td>
<td>1994</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-2</td>
<td>Oxidizer Storage for 613</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>192 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-3</td>
<td>Solvent Storage for 613</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>70 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-4</td>
<td>Solvent Cleaning Tank - 613</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>70 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-5</td>
<td>Curing Test Equip for 613</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>192 SF</td>
<td>1966</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-6</td>
<td>Shipping Material Storage</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>40 SF</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>613-7</td>
<td>Heating Fuel Storage Tank</td>
<td>Bldg</td>
<td>C8</td>
<td>0</td>
<td>2500 GA</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>613-8</td>
<td>Inert Storage Bldg</td>
<td>Bldg</td>
<td>C8</td>
<td>1</td>
<td>560 SF</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>614</td>
<td>Transformer Sta for 613</td>
<td>Util</td>
<td>C8</td>
<td>0</td>
<td>150 KV</td>
<td>1965</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>615</td>
<td>Hazardous Machng/Blending</td>
<td>Strc</td>
<td>B8</td>
<td>0</td>
<td>240 SF</td>
<td>1966</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>617</td>
<td>Shock Tester (G Dept Equip)</td>
<td>Bldg</td>
<td>D8</td>
<td>0</td>
<td>1 EA</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>618</td>
<td>Shock Simulator (G Group)</td>
<td>Bldg</td>
<td>D8</td>
<td>0</td>
<td>1 EA</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>619</td>
<td>Inert Storage</td>
<td>Bldg</td>
<td>B9</td>
<td>1</td>
<td>672 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>619-1</td>
<td>Fuels Storage Bldg</td>
<td>Bldg</td>
<td>B9</td>
<td>1</td>
<td>144 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>619-2</td>
<td>Oxidizer Storage Bldg</td>
<td>Bldg</td>
<td>B9</td>
<td>1</td>
<td>144 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>620</td>
<td>Explosives Casting Bldg</td>
<td>Bldg</td>
<td>B9</td>
<td>1</td>
<td>3729 SF</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>620-1</td>
<td>Transformer For Bldg 620</td>
<td>Util</td>
<td>B9</td>
<td>0</td>
<td>225 KV</td>
<td>1973</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>620-3</td>
<td>Heating Fuel Storage Tank</td>
<td>Strc</td>
<td>B9</td>
<td>0</td>
<td>1000 GA</td>
<td>1994</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>630</td>
<td>Small Scale Expl Test Area</td>
<td>Strc</td>
<td>B8</td>
<td>0</td>
<td>1 EA</td>
<td>1955-1960</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>700</td>
<td>PCB Waste Storage</td>
<td>Strc</td>
<td>C11</td>
<td>1</td>
<td>800 SY</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>701</td>
<td>PCB Xfmr Storage Pad</td>
<td>Bldg</td>
<td>C11</td>
<td>0</td>
<td>89 SF</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>702</td>
<td>Waste Oil Storage Tank</td>
<td>Strc</td>
<td>C11</td>
<td>0</td>
<td>4000 GA</td>
<td>1989</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>705</td>
<td>Sentry House</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>24 SF</td>
<td>1990</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>1327</td>
<td>Transformer Station for 327</td>
<td>Util</td>
<td>B11</td>
<td>0</td>
<td>500 KV</td>
<td>1984</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>380T</td>
<td>Temp Test Site Trailer (H)</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>640 SF</td>
<td>1988</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>380T-1</td>
<td>Temp Test Site Trailer (H)</td>
<td>Bldg</td>
<td>B11</td>
<td>1</td>
<td>600 SF</td>
<td>1988</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>70CL-1</td>
<td>Chemical Storage Locker</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>207 SF</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>70CL-2</td>
<td>Chemical Storage Locker</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>207 SF</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>310CL-1</td>
<td>Chemical Storage Locker B310</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>207 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>310CL-2</td>
<td>Chemical Storage Locker B310</td>
<td>Bldg</td>
<td>C10</td>
<td>1</td>
<td>207 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>343CL-1</td>
<td>Chemical Storage Locker B343</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>207 SF</td>
<td>1991</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>345CL-1</td>
<td>Chemical Storage Locker B345</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>144 SF</td>
<td>1993</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>383CL-1</td>
<td>Chemical Storage Locker</td>
<td>Bldg</td>
<td>C11</td>
<td>1</td>
<td>144 SF</td>
<td>1994</td>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>A</td>
<td>Married Officers Qtrs</td>
<td>Bldg</td>
<td>E5</td>
<td>2</td>
<td>3738 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>Married Officers Qtrs</td>
<td>Bldg</td>
<td>E5</td>
<td>2</td>
<td>3738 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 7.1
List of Facilities at NSWCDD - White Oak
Property Records Summary (Adapted)

<table>
<thead>
<tr>
<th>Facility Number</th>
<th>Facility Name</th>
<th>Facility Type</th>
<th>Map Grid (Fig. 7.3)</th>
<th>Stories</th>
<th>Area (sq. ft.)</th>
<th>Year Built</th>
<th>Condition/Integrity</th>
<th>Recommendation Contrib./Non-Contrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Married Officers Qtrs</td>
<td>Bldg</td>
<td>B2</td>
<td>2</td>
<td>3729 SF</td>
<td>1944</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>Married Officers Qtrs</td>
<td>Bldg</td>
<td>C4</td>
<td>2</td>
<td>3392 SF</td>
<td>1932</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>T01</td>
<td>Storage</td>
<td>Bldg</td>
<td>C5</td>
<td>1</td>
<td>960 SF</td>
<td>1945</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T05</td>
<td>Health Physics</td>
<td>Bldg</td>
<td>C5</td>
<td>1</td>
<td>1286 SF</td>
<td>1945</td>
<td>F (Altered)</td>
<td>N</td>
</tr>
<tr>
<td>T14</td>
<td>Salvage Shed</td>
<td>Bldg</td>
<td>D5</td>
<td>1</td>
<td>1870 SF</td>
<td>1946</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T24</td>
<td>Employees Recreation Bldg</td>
<td>Bldg</td>
<td>C2</td>
<td>1</td>
<td>2064 SF</td>
<td>1945</td>
<td>F (Altered)</td>
<td>C</td>
</tr>
<tr>
<td>T26</td>
<td>Storage</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>525 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T27</td>
<td>Storage</td>
<td>Bldg</td>
<td>B10</td>
<td>1</td>
<td>525 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T28</td>
<td>XPL Preparation/Packing</td>
<td>Bldg</td>
<td>B9</td>
<td>0</td>
<td>77 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T29</td>
<td>Neutron Calibration Facility</td>
<td>Bldg</td>
<td>A10</td>
<td>1</td>
<td>1176 SF</td>
<td>1947</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>T30</td>
<td>Storage Building</td>
<td>Bldg</td>
<td>B3</td>
<td>1</td>
<td>8100 SF</td>
<td>1947</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T32</td>
<td>Pest Control Building</td>
<td>Bldg</td>
<td>B5</td>
<td>1</td>
<td>216 SF</td>
<td>1948</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T35</td>
<td>Temporary Loading</td>
<td>Bldg</td>
<td>D10</td>
<td>1</td>
<td>840 SF</td>
<td>1949</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>T48</td>
<td>Welding Shed</td>
<td>Bldg</td>
<td>C3</td>
<td>1</td>
<td>590 SF</td>
<td>1960</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>Golf Course</td>
<td>Landscape</td>
<td>Several</td>
<td>Several</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Total: Contributing 260 Non-contributing 112 Total 372</td>
</tr>
</tbody>
</table>
General Resource Map

Figure 7.2
10. Geographical Data

(SEE VERTICAL FILE FOR ADDITIONAL MAPS)

Naval Ordnance Laboratory Survey District Boundary
M:\33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA

MAIN ENTRANCE VIEW, LOOKING NE
1/40
Main complex (buildings 1-3) including circular driveway, looking NE

2/40
M: 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORSE & O'MARA INC

MAIN COMPLEX (BUILDINGS 1-3), LOOKING N

3/40
NAVY ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY AND PRINCE GEORGE'S COUNTIES, MD
PHOTO: CHRIS MARTIN
MARCH 1996
NEGATIVE LOCATION: GEMINI/RENEE TO MARTIN, INC

MAIN COMPLEX (BUILDINGS 1-3) looking E
4/40
MARCH 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

DETAIL, MAIN COMPLEX, BUILDING 1, LOOKING N
5/40
M: 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRI$ MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

BUILDING 25 (TECHNICAL PUBLIC WORKS SHOP), LOOKING NE

6/40
M: 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

BUILDING 90 (EXPLOSIVE DAMAGE BRANCH OPERATIONS), LOOKING NE
7/40
M: 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MAHLA, INC

QUARTERS B AND BUILDING 42 (GARAGE FOR QUARTERS A AND B),
LOOKING N
2/40
M-33-25

NAVAL ORDNANCE HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996.
LOCATION OF NEGATIVES GREENHORNE & O'MARA, INC

GOLF COURSE, LOOKING W

9/40
M: 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

GOLF COURSE, LOOKING S
10/40
M-32-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORSE & O'MARA, INC

QUARTERS C, LOOKING NE (NON-CONTRIBUTING)
11/40
Mi 33-15
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

BUILDINGS 72 (LUMBER STORAGE) AND 79 (GAS CYLINDER STORAGE),
LEFT TO RIGHT, LOOKING NW (79 IS NON-CONTRIBUTING)

12/40
M: 33-25

NAVAL ORDNANCE LABORATORY, HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

BUILDING 205 (LARGE PROJECTS LABORATORY); BUILDING 206 (MODEL LABORATORY), RIGHT TO LEFT, LOOKING NE
13/40
M 133-25

NAVAL ORDURAY - "BILLY HILL" HISTORIC DISTRICT
MONTGOMERY - PRINCE GEORGE'S COUNTIES, MD
PHOTO: CHRIS MINNIN

MARCH 1996

LOCATION: 9201 EAGLE ROCK ROAD, ARLINGTON, VA.

BUILDING 204 (Long 200 area) exterior view of
Wall construction, looking E

14/IIO
M33-25
NAVAL ORDINANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTY, MD
Photographer: Chris Martin
March, 1996
Location of negatives: Greenhowe & O'Mara, Inc.
Building 659 (undersea weapons tank), looking SW
15/40
M-33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTY, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORSE & O'MARA, INC.
BUILDING 406 (HYPERSONIC TUNNEL BUILDING), LOOKING NW
46/40
M33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTY, MD
PHOTOGRAPHER: CHAD MARTIN

MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA, INC.
BUILDING 427 (HYDRODYNAMICS TANK) LOOKING NE

17/40
M. 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD

PHOTOGRAPHER CHRIS MARTIN

MARCH 1996

LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

BUILDING 428 (HYDROBALLISTICS WATER STORAGE TANK), LOOKING NW
18/40
M 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVE GREENHORSE & C'MARA INC

BUILDING 430 (HYPERVELLOCITY WIND TUNNEL) AND STRUCTURE 431
(TUNNEL 9 VACUUM SPHERE), LEFT TO RIGHT, LOOKING SW
19/40
M 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD.
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

BUILDING 430 (HYPERVELOCITY WIND TUNNEL), AND STRUCTURE 431
(TUNNEL 9 VACUUM SPHERE), RIGHT TO LEFT, LOOKING SE
20/40
M 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

STRUCTURE 422 (DAHLGREN ROAD BRIDGE), LOOKING NE
21/40
MS 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVE: GREENHORNE & O'MARA, INC

STRUCTURE 423 (WOODEN BRIDGE), LOOKING NE
22/40
M 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD.
PHOTOGRAPHER CHRI$ MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & Q'ATAKA INC

BUILDING 611 (SHOCK TESTING FACILITY)/618 (SHOCK SIMULATOR), LOOKING NE
23/40
Butler 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC.

BUILDINGS 611/618, INTERIOR SHOWING 26-INCH-BORE GUN, LOOKING N
24/40
M133 - 25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

STRUCTURE 352 (EXPLOSIVES MAGAZINE), LOOKING SE
25/40
M-33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC
MARCH 1996

STRUCTURE 362 (EXPLOSIVES MAGAZINE), LOOKING NE
26/40
M: 33-25
NAVAL ORDNANCE HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'CMARA, INC.

BUILDING 331 (BOMBPROOF), LOOKING NE
27/40
M: 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

BUILDING 316 (CHARGE ASSEMBLY BUILDING), LOOKING SE
28/40
M-33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

STRUCTURES 387/369-4 (HIGH-GRAVITY CENTRIFUGE PIT/HIGHPER CAP
SURVEILLANCE BARRICADE), LEFT TO RIGHT, LOOKING W

29/4/6
M33-25
NAVAL ORDUNACE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA, INC

BUILDING 310A (CHEMICAL LABORATORY), LOOKING S
36/40
M 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRISS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

HISTORIC PHOTO OF 310A (CHEMICAL LABORATORY), CIRCA 1973, LOOKING NE
31/40
MI 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA, INC.

STRUCTURE 323 (CONICAL SHOCK TUBE), LOOKING E
32/40
MI 33-25
Naval Ordnance Laboratory Historic District
Montgomery County and Prince George's Counties, MD
Photographer Chris Martin
March 1996
Location of Negatives Greenhoe & O'Mara, Inc.

Building 302 (Storage Building), Looking SW
33/40
M 33 - 25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

BUILDING 508 (WASTE CHEMICAL STORAGE), LOOKING N (NON-CONTRIBUTING)
34/40
M: 33.25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER: CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES: GREENHORNE & O'MARA, INC

BUILDING 700 (PCB WASTE STORAGE), BUILDING 702 (WASTE OIL STORAGE TANK), LOOKING SW (BOTH NON-CONTRIBUTING)
35/40
EXPLOSIVE PROCESSING
MIXING AND CASTING

BLDG. 620

20 GAL. KETTLE

REMOTE PANEL

2 GAL. KETTLE

TEMP CONTROL

STEAM TABLE

REMOTE MIXING
2 GAL. ROSS MIXER (ON RIGHT)
5 GAL. KETTLE
M 33-25
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

EXHIBIT PANEL: "EXPLOSIVE PROCESSING, MIXING AND CASTING"
36/40
HYDROBALLISTIC FACILITY

PHYSICAL DESCRIPTION

- 100 FEET LONG
- 35 FEET WIDE
- 75 FEET DEEP
- STAINLESS STEEL LINED
- 1.75 MILLION GALLONS OF WATER
- 60 FEET WATER DEPTH (VAR.)
- VACUUM CAPABILITY

RESEARCH AND DEVELOPMENT TESTING

- WATER ENTRY
- WATER EXIT
- UNDERWATER LAUNCHING
- TRAJECTORIES
- BUOYANT RISE
- SINK RATE
N 33° 25'
NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHURNE & O'MARA INC

EXHIBIT PANEL: "HYDROBALLISTICS FACILITY" (427, HYDROBALLISTIC TANK)
37/40
M 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT
MONTGOMERY COUNTY AND PRINCE GEORGE'S COUNTIES, MD
PHOTOGRAPHER CHRIS MARTIN
MARCH 1996
LOCATION OF NEGATIVES GREENHORNE & O'MARA INC

SCALE MODEL: BUILDING 427 (HYDROBALLISTICS TANK)

38/40
M1 33-25

NAVAL ORDNANCE LABORATORY HISTORIC DISTRICT

MONTGOMERY AND PRINCE GEORGE'S COUNTIES, MD

PHOTO: CIRCUS MARTINU

MARCH 1996

NEG. LOCATION: GREENHORSE & O'DONNA, INC.

EXHIBIT PANEL: “WATER ENTRY MODEZ”

39/40
HYPERVELOCITY WIND TUNNEL
NO. 9

is the nation's primary high Mach number, high Reynolds number facility for aerodynamic testing of strategic weapons and hypersonic flight vehicles. It is able to accommodate full scale re-entry bodies, advanced interceptors and scaled aerospace plane models.

Mach numbers: 6, 10, 14, 18
Altitude simulation: sea level to 180,000 ft
Reynolds number: 50 x 10^7/ft
Long run times: 0.25 to 15 sec
Large size: 9 ft diameter test section
EXHIBIT PANEL "HYPERVERLOCITY WIND TUNNEL NO. 9"
40/40
MD 33-25
QUARTERS M
NAVAL ORDNANCE LABORATORY
Montgomery Co., MD
DAVID C. BERG
1/22/47
MD SHPO
QUARTERS M VIEW TO N
41 of 48
MD 33-25 Quarters M
NAVAL ORDNANCE LABORATORY
Montgomery Co., MD

DAVID C. BERG.

1/22/97
MD SHPO
Quarters M, View to W

#42 of 48
MD 33-25 QUARTERS M GARAGE
NAVAL ORDNANCE LABORATORY
Montgomery Co., MD
David C. Berg
1/22/97
MD SHPO
QUARTERS M GARAGE, VIEW TOW
43 OF 48
MD 33-25 Operations Lab Boiler Plant, Bldg. 261
NAVAL ORDNANCE LABORATORY
Montgomery Cty., MD
David C. Berg
1/22/1977
MD SHPO
Operations Lab Boiler Plant, Bldg 261
VIEW TO N
44 or 48
MD 33-25 Building 202, STANDARD LAB

NAVAL ORDNANCE LABORATORY
Montgomery Co., MD

DAVID C. BERG
11/22/94

MD SHPO
BLD6 202, STANDARD LAB

VIEW TO W

45 of 48
MD 33-25 Building 203, Spherical Field Lab

NAVAL ORDNANCE LABORATORY
Montgomery Co., MD

DAVID C. BERG

1/22/97

MD SHPD

BLDG. 203, SPHERICAL FIELD LAB

VIEW TO N

46 of 48
MD 33-25, Bldg 204
LARGE PROJECTS LAB
NAVAL ORDNANCE LABORATORY
MONTGOMERY Co., MD

DAVID C. BERG
1/22/97
MD SHPO
BLDG. 204, LARGE PROJECTS LAB
VIEW TO E
47 of 48
MD 33-25
Building 206, Model Laboratory
Naval Ordnance Laboratory
Montgomery Co., MD
David C. Berg
1/22/97
MD SHPO
VIEW TO N
#48 of 48